Meningkatkan Efisiensi Prediksi Risiko Diabetes Melitus dengan Metode Fuzzy Decision Tree
Abstract
The main problem in Fuzzy Logic (FL)-based prediction models is that the number of rules increases as the data dimension increases, reducing the efficiency of the system in interpretation and prediction. This study aims to unravel the complexity and improve the accuracy value of DM predictions using the Fuzzy Decision Tree (FDT) method based on Iterative Dichotomiser 3 (ID3). The research data was obtained from the National Institute of Diabetes and Digestive and Kidney Diseases with the parameters of glucose, BMI, HDL, and systolic blood pressure. The process includes data fuzzification, the formation of a decision tree with ID3, and the application of two thresholds, namely FCT and LDT. The results showed that the FDT model succeeded in reducing the number of rules by 25%, from 81 rules to 60 rules. The application of ID3-based FDT succeeded in increasing the accuracy value of DM predictions by 80%. The conclusion of the study states that the FDT model is able to unravel the complexity of the prediction model by using a simpler number of rules and can maintain and increase the accuracy value of the DM prediction model.
Keywords: Diabetes Melitus; Fuzzy Decision Tree; Fuzzy Logic; Fuzzy Sugeno; Risk Prediction
Abstrak
Permasalahan utama dalam model prediksi berbasis Fuzzy Logic (FL) adalah meningkatnya jumlah aturan seiring bertambahnya dimensi data, mengurangi efisiensi sistem dalam interpretasi dan prediksi. Penelitian ini bertujuan mengurai kompleksitas dan meningkatkan nilai akurasi prediksi DM menggunakan metode Fuzzy Decision Tree (FDT) berbasis Iterative Dichotomiser 3 (ID3). Data penelitian diperoleh dari National Institute of Diabetes and Digestive and Kidney Diseases dengan parameter glukosa, BMI, HDL, dan tekanan darah sistolik. Proses meliputi fuzzifikasi data, pembentukan pohon keputusan dengan ID3, serta penerapan dua threshold, yaitu FCT dan LDT. Hasil penelitian menunjukkan bahwa model FDT berhasil mengurangi jumlah aturan sebesar 25%, dari 81 aturan menjadi 60 aturan. Penerapan FDT berbasis ID3 berhasil meningkatkan nilai akurasi prediksi DM sebesar 80%. Simpulan penelitian menyatakan bahwa model FDT mampu untuk mengurai kompleksitas model prediksi dengan menggunakan menghasilkan jumlah aturan yang lebih sederhana dan dapat menjaga serta meningkatkan nilai akurasi model prediksi DM.
Kata kunci: Diabetes Melitus; Pohon Keputusan Fuzzy; Logika Fuzzy; Fuzzy Sugeno; Prediksi Risiko
References
D. J Magliano and E. J Boyko, “IDF Diabetes Atlas 11th Edition,” 2025. Accessed: May 14, 2025. [Online]. Available: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/
E. Dritsas and M. Trigka, “Data-Driven Machine-Learning Methods for Diabetes Risk Prediction,” Sensors, vol. 22, no. 14, pp. 1–18, Jul. 2022, doi: 10.3390/s22145304.
D. Kurniawan, T. T. Wulansari, M. R. Ibrahim, and R. M. Fajar, “Model Berbasis Logika Fuzzy untuk Mengukur Risiko Menderita Diabetes Melitus,” Progresif: Jurnal Ilmiah Komputer, vol. 20, no. 1, pp. 337–347, Feb. 2024, doi: 10.35889/progresif.v20i1.1587.
D. Kurniawan and D. N. Utama, “Decision Support Model using FIM Sugeno for Assessing the Academic Performance,” Advances in Science, Technology and Engineering Systems Journal, vol. 6, no. 1, pp. 605–611, Jan. 2021, doi: 10.25046/aj060165.
D. N. Utama and D. Kurniawan, “Fuzzy based Decision Support Model for Deciding the Students’ Academic Performance,” International Journal of Emerging Technology and Advanced Engineering, vol. 11, no. 10, pp. 118–130, Oct. 2021, doi: 10.46338/ijetae1021_15.
B. Zhu, J. Wang, and X. Zhang, “Fuzzy Decision Tree Based on Fuzzy Rough Sets and Z-Number Rules,” Axioms, vol. 13, no. 12, pp. 1–23, Nov. 2024, doi: 10.3390/axioms13120836.
T. Tundo and F. Mahardika, “Fuzzy Inference System Tsukamoto–Decision Tree C 4.5 in Predicting the Amount of Roof Tile Production in Kebumen,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 7, no. 2, pp. 533–544, Apr. 2023, doi: 10.31764/jtam.v7i2.13034.
Z. Liu, A. Liu, G. Zhang, and J. Lu, “An Empirical Study of Fuzzy Decision Tree for Gradient Boosting Ensemble,” Springer, 2022, pp. 716–727. doi: 10.1007/978-3-030-97546-3_58.
T. Mahboob Alam et al., “Disease Diagnosis System Using IoT Empowered with Fuzzy Inference System,” Computers, Materials & Continua, vol. 70, no. 3, pp. 5305–5319, 2022, doi: 10.32604/cmc.2022.020344.
S. A. Abdulkareem, H. Y. Radhi, Y. A. Fadil, and H. Mahdi, “Soft computing techniques for early diabetes prediction,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, no. 2, pp. 1167–1176, Feb. 2022, doi: 10.11591/ijeecs.v25.i2.pp1167-1176.
S. Oktova Pramudya et al., “Sistem Pendeteksi Diabetes Menggunakan Algoritma Tsukamoto Pada Bahasa Pemrograman Python,” Seminar Nasional Informatika Bela Negara (SANTIKA), vol. 3, no. 1, pp. 2747–0563, 2023, Accessed: May 23, 2025. [Online]. Available: https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/191
K. M. Aamir, L. Sarfraz, M. Ramzan, M. Bilal, J. Shafi, and M. Attique, “A fuzzy Rule-Based System for Classification of Diabetes,” Sensors, vol. 21, no. 23, pp. 1–17, Dec. 2021, doi: 10.3390/s21238095.
H. Zhu, “English Teaching Quality Evaluation Based on Analytic Hierarchy Process and Fuzzy Decision Tree Algorithm,” Comput Intell Neurosci, vol. 2022, pp. 1–10, Jul. 2022, doi: 10.1155/2022/5398085.
J. Li et al., “Explainable CNN With Fuzzy Tree Regularization for Respiratory Sound Analysis,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1516–1528, Jun. 2022, doi: 10.1109/TFUZZ.2022.3144448.
S. Aisah, F. R. Umbara, and H. Ashaury, “Klasifikasi Kerpibadian Berdasarkan Big Five Personality Menggunakan Metode Fuzzy Decision Tree Dengan Algoritma C4.5,” Jurnal Teknologi Informatika dan Komputer, vol. 8, no. 1, pp. 333–349, Mar. 2022, doi: 10.37012/jtik.v8i1.1110.
H. B. Santoso, “Fuzzy Decision Tree to Predict Student Success in Their Studies,” International Journal of Quantitative Research and Modeling, vol. 1, no. 3, pp. 135–144, 2020.
P. G. Ahire, S. Sanket Kolhe, K. Kirange, H. Karale, and A. Bhole Assistant Professor, “Implementation of Improved ID3 Algorithm to Obtain more Optimal Decision Tree,” International Journal of Engineering Research, vol. 11, no. 02, pp. 44–47, 2015, [Online]. Available: www.ijerd.com
A. S. Fitrani, M. A. Rosid, Y. Findawati, Y. Rahmawati, and A. K. Anam, “Implementation of ID3 Algorithm Classification Using Web-based Weka,” J Phys Conf Ser, vol. 1381, no. 1, pp. 1–9, Nov. 2019, doi: 10.1088/1742-6596/1381/1/012036.
F. Romansyah, I. S. Sitanggang, and S. Nurdiati, “Fuzzy Decision Tree dengan Algoritme ID3 pada Data Diabetes,” Internetworking Indonesia Jurnal, vol. 1, no. 2, pp. 45–52, 2009, [Online]. Available: https://www.researchgate.net/publication/298455671
How To Cite This :
Refbacks
- There are currently no refbacks.