Peningkatan Akurasi Deteksi Penyakit Malaria Menggunakan Transfer Learning pada Arsitektur CNN

Sherif Aji Wicaksono(1*),Ema Utami(2)
(1) AMIKOM, Yogyakarta
(2) AMIKOM, Yogyakarta
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i3.3346

Abstract

Malaria is a disease that requires fast and accurate diagnosis. This study compares three CNN architectures VGG16, ResNet50, and InceptionV3 for malaria peripheral blood smear classification using the public NIH dataset. The pipeline includes standardized preprocessing, moderate augmentation, and transfer learning with early stopping (monitoring val_recall). Evaluation on a stratified test set covers accuracy, precision, recall, F1, ROC-AUC, PR-AP, confusion matrix, and paired statistics (McNemar). VGG16 yields the best performance at the 0.50 threshold (AUC 0.9833; AP 0.9846; Recall 0.8955; F1 0.9308) and significantly outperforms InceptionV3 (X2(1)=111.06; p<1x110-24). Bootstrap uncertainty (1.000 resamples) gives Recall mean 0.8956 (95% CI 0.8843–0.9077) and F1 mean 0.9309 (95% CI 0.9239–0.9377). Findings support a VGG16-based model as a feasible pre-screening module in resource-constrained settings, emphasizing sensitivity to reduce false negatives.

Keywords: Malaria; Image classification; VGG16; RO-AUC; McNemar

 

Abstrak

Malaria merupakan penyakit yang memerlukan diagnosis cepat dan akurat. Penelitian ini membandingkan tiga arsitektur CNN VGG16, ResNet50, dan InceptionV3 untuk klasifikasi citra apusan darah tepi malaria berbasis dataset publik NIH. Pipeline meliputi praproses terstandar, augmentasi moderat, dan transfer learning dengan early stopping (monitor val_recall). Evaluasi dilakukan pada himpunan uji terstratifikasi mengukur akurasi, presisi, recall, F1, ROC-AUC, PR-AP, confusion matrix, serta uji statistik berpasangan (McNemar). VGG16 menunjukkan kinerja terbaik pada ambang 0.50 (AUC 0.9833; AP 0.9846; Recall 0.8955; F1 0.9308) dan unggul signifikan atas InceptionV3(X2(1)=111.06; p<1x110-24). Estimasi ketidakpastian berbasis bootstrap (1.000 ulangan) menghasilkan Recall mean 0.8956 (CI95% 0.8843–0.9077) dan F1 mean 0.9309 (CI95% 0.9239–0.9377). Temuan ini mendukung model berbasis VGG16 sebagai modul pra-skrining otomatis di lingkungan berdaya komputasi terbatas, dengan penekanan pada sensitivitas untuk meminimalkan salah-negatif.

 

Keywords


Malaria; Klasifikasi citra; VGG16; ROC-AUC; McNemar

The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.