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Abstract 

Malaria is a disease that requires fast and accurate diagnosis. This study compares three CNN 
architectures VGG16, ResNet50, and InceptionV3 for malaria peripheral blood smear 
classification using the public NIH dataset. The pipeline includes standardized preprocessing, 
moderate augmentation, and transfer learning with early stopping (monitoring val_recall). 
Evaluation on a stratified test set covers accuracy, precision, recall, F1, ROC-AUC, PR-AP, 
confusion matrix, and paired statistics (McNemar). VGG16 yields the best performance at the 
0.50 threshold (AUC 0.9833; AP 0.9846; Recall 0.8955; F1 0.9308) and significantly 
outperforms InceptionV3 (χ²(1)=111.06; p<1×10⁻²⁴). Bootstrap uncertainty (1.000 resamples) 
gives Recall mean 0.8956 (95% CI 0.8843–0.9077) and F1 mean 0.9309 (95% CI 0.9239–
0.9377). Findings support a VGG16-based model as a feasible pre-screening module in 
resource-constrained settings, emphasizing sensitivity to reduce false negatives. 
Keywords: Malaria; Image classification; VGG16; RO-AUC; McNemar 

 
Abstrak 

Malaria merupakan penyakit yang memerlukan diagnosis cepat dan akurat. Penelitian ini 
membandingkan tiga arsitektur CNN VGG16, ResNet50, dan InceptionV3 untuk klasifikasi citra 
apusan darah tepi malaria berbasis dataset publik NIH. Pipeline meliputi praproses terstandar, 
augmentasi moderat, dan transfer learning dengan early stopping (monitor val_recall). Evaluasi 
dilakukan pada himpunan uji terstratifikasi mengukur akurasi, presisi, recall, F1, ROC-AUC, PR-
AP, confusion matrix, serta uji statistik berpasangan (McNemar). VGG16 menunjukkan kinerja 
terbaik pada ambang 0.50 (AUC 0.9833; AP 0.9846; Recall 0.8955; F1 0.9308) dan unggul 
signifikan atas InceptionV3 (χ²(1)=111.06; p<1×10⁻²⁴). Estimasi ketidakpastian berbasis 
bootstrap (1.000 ulangan) menghasilkan Recall mean 0.8956 (CI95% 0.8843–0.9077) dan F1 
mean 0.9309 (CI95% 0.9239–0.9377). Temuan ini mendukung model berbasis VGG16 sebagai 
modul pra-skrining otomatis di lingkungan berdaya komputasi terbatas, dengan penekanan 
pada sensitivitas untuk meminimalkan salah-negatif. 
Kata kunci: Malaria; Klasifikasi citra; VGG16; ROC-AUC; McNemar 
 
1. Pendahuluan 

Malaria tetap menjadi isu kesehatan global yang kritis, membutuhkan diagnosis yang 
cepat, konsisten, dan terukur untuk mencegah komplikasi fatal. Mikroskopi sebagai standar 
emas diagnosis sangat bergantung pada kualitas preparat, keahlian teknis, ketahanan analis, 
dan subjektivitas interpretasi, sehingga rentan menghasilkan false negative dengan dampak 
serius [1]. Oleh karena itu, otomatisasi deteksi melalui deep learning menjadi solusi potensial 
untuk meningkatkan akurasi dan kecepatan diagnosis.  

Berbagai studi terdahulu telah menunjukkan keberhasilan Convolutional Neural 
Network (CNN) berbasis transfer learning dalam klasifikasi citra medis, termasuk deteksi parasit 
malaria [2][3]. Namun, mayoritas penelitian berfokus pada pelaporan akurasi agregat tanpa 
menekankan metrik yang krusial dalam konteks skrining medis, seperti recall (sensitivitas) untuk 
meminimalkan kasus terlewat (false negative). Selain itu, aspek efisiensi komputasi seperti 
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ukuran model, waktu pelatihan, dan kebutuhan inferensi yang sangat penting untuk adopsi di 
fasilitas kesehatan dengan sumber daya terbatas, seringkali kurang mendapat perhatian [4][5].  

Berdasarkan gap tersebut, penelitian ini mengusulkan evaluasi komparatif yang 
komprehensif terhadap tiga arsitektur CNN populer VGG16 [6], ResNet50 [7], dan InceptionV3 
[8] dalam kerangka transfer learning. Ketiga arsitektur dipilih karena mewakili filosofi desain 
yang berbeda seperti VGG16 dengan konvolusi berulang dan dalam, ResNet50 dengan koneksi 
residual untuk mitigasi vanishing gradient, dan InceptionV3 dengan modul multi-skala untuk 
efisiensi komputasi [9][10][11]. Rasionalisasi pemilihan ini adalah untuk mengeksplorasi trade-
off antara akurasi, sensitivitas (recall), dan biaya komputasi dalam konteks yang seragam, 
sehingga dapat memberikan rekomendasi yang tepat untuk implementasi di lapangan. 

Tujuan penelitian ini adalah membangun dan mengevaluasi tiga model klasifikasi biner 
(terinfeksi vs tidak terinfeksi) untuk deteksi malaria menggunakan transfer learning pada 
arsitektur VGG16, ResNet50, dan InceptionV3, membandingkan kinerja model dengan 
penekanan khusus pada metrik recall dan analisis statistik berpasangan, mengevaluasi efisiensi 
komputasi masing-masing model dan memberikan insight interpretabilitas melalui visualisasi 
Gradient-weighted Class Activation Mapping (Grad-CAM). Kontribusi penelitian diharapkan 
tidak hanya pada ranah akademis berupa benchmark terstandarisasi, tetapi juga pada ranah 
praktis berupa rekomendasi model yang feasible sebagai modul pra-skrining otomatis di 
lingkungan sumber daya terbatas.  
 
2. Tinjauan Pustaka  
 Tinjauan pustaka difokuskan pada penelitian-penelitian yang mengaplikasikan deep 
learning, khususnya transfer learning, untuk deteksi malaria dari citra apusan darah. 
 Rajaraman et al. (2018) [12] mengevaluasi beberapa arsitektur CNN pretrained 
(sebagai feature extractor dan fine-tuning) pada dataset citra apusan darah tipis malaria. Studi 
ini melaporkan peningkatan akurasi klasifikasi dan menyoroti potensi transfer learning. Namun, 
penelitian tersebut tidak melakukan komparasi mendalam antar arsitektur terkait metrik 
sensitivitas (recall) dan efisiensi komputasi, serta tidak menguji signifikansi statistik perbedaan 
performa model. 
 Sinha & Gupta (2023) [13] mengimplementasikan transfer learning dengan ResNet50 
untuk diagnosis malaria berbantuan komputer. Mereka melaporkan akurasi yang sangat tinggi 
(>98%) pada tugas klasifikasi biner. Kelemahan studi ini adalah fokusnya yang terbatas hanya 
pada satu arsitektur (ResNet50) tanpa perbandingan dengan alternatif lain, sehingga sulit 
menilai keunggulan komparatifnya. Selain itu, analisis terbatas pada akurasi tanpa eksplorasi 
mendalam terhadap recall atau precision. 
 Mujahid et al. (2024) [14] menggunakan arsitektur EfficientNet yang lebih modern untuk 
deteksi malaria pada citra sel darah merah. Mereka mencapai akurasi 97,57% dan menekankan 
stabilitas model. Meski menggunakan arsitektur efisien, penelitian ini tidak membandingkan 
kinerjanya secara langsung dengan arsitektur klasik seperti VGG16 atau ResNet50 dalam 
protokol eksperimen yang sama, sehingga trade-off antara performa dan efisiensi belum 
terkuantifikasi secara jelas. 
 Shahin et al. (2025) [15] mengusulkan kerangka kerja ensemble yang menggabungkan 
beberapa model (feature fusion) untuk deteksi malaria. Pendekatan ini menghasilkan akurasi 
96,47% dan F1-score 96,45%. Kelemahan utama adalah kompleksitas sistem yang tinggi, baik 
dalam pelatihan maupun inferensi, yang dapat menjadi kendala untuk penerapan real-time atau 
di lingkungan dengan sumber daya komputasi terbatas. 
 Berdasarkan analisis terhadap penelitian terdahulu, penelitian ini berkontribusi pada 
state of the art dengan beberapa aspek kebaruan pada perbandingan langsung dan adil antara 
tiga arsitektur CNN (VGG16, ResNet50, InceptionV3) pada protokol yang seragam (dataset, 
praproses, augmentasi, skema fine-tuning, dan set evaluasi). Hal ini jarang dilakukan secara 
komprehensif dalam literatur sejenis kemudian bergeser dari fokus tradisional pada akurasi 
agregat ke penekanan pada recall (sensitivitas), metrik yang paling kritis dalam skrining 
penyakit untuk meminimalkan false negative. Analisis juga diperkaya dengan kurva ROC-AUC, 
PR-AP, dan Confusion Matrix kemudian menggunakan Uji McNemar (uji statistik berpasangan 
non-parametrik) untuk menguji signifikansi perbedaan kinerja model, yang memberikan 
landasan statistik yang kuat atas klaim keunggulan suatu model. Selain itu, estimasi interval 
kepercayaan (CI) melalui bootstrap dilakukan untuk mengkuantifikasi ketidakpastian dari metrik 
utama (seperti Recall dan F1), meningkatkan robustnes pelaporan hasil lalu mengevaluasi 
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secara eksplisit aspek efisiensi komputasi yang relevan untuk implementasi, seperti ukuran 
model dalam memori dan estimasi beban komputasi relatif dan enyertakan analisis kualitatif 
menggunakan Grad-CAM untuk memvisualisasikan daerah perhatian model, memberikan 
insight tentang bagaimana model membuat keputusan. 
 
3. Metodologi 
3.1 Desain Penelitian 

Penelitian bersifat deskriptifkomparatif dan dilaksanakan melalui eksperimen komputasi 
terkontrol: setiap model dilatih dan diuji pada protokol yang sama agar hasil dapat dibandingkan 
secara adil. Analisis dilakukan secara kuantitatif pada testing set dengan metrik klasifikasi 
standar. Validitas internal dijaga melalui pemisahan data traintest 80:20 yang dilakukan secara 
acak namun seimbang (stratified). Pendekatan transfer learning digunakan untuk melakukan 
fine-tuning model CNN yang telah dilatih awal pada ImageNet. 
 
3.2 Dataset dan Sumber Data 

Data menggunakan NIH/LHNCBC Malaria Cell Images yang luas dipakai sebagai 
benchmark terbuka. Dataset berisi 27.558 citra mikroskopik sel darah, terbagi merata antara 
kelas Parasitized (13.779) dan Uninfected (13.779), dengan label yang jelas. Data diunduh dari 
repositori resmi NIH, diekstrak, dan diperiksa untuk memastikan tidak ada berkas rusak atau 
tidak relevan. Seluruh citra diproses seragam menjadi 100×100 piksel (RGB). Prapemrosesan 
meliputi: resize ke 100×100, normalisasi piksel ke rentang 0.01.0, label encoding 
(Parasitized=1; Uninfected=0), dan augmentasi (flipping horizontal, rotasi, zoom, perubahan 
kecerahan) yang hanya diterapkan pada training set. Pembagian 80% train / 20% test dilakukan 
stratified menggunakan scikit-learn dan ImageDataGenerator.  
 
3.3. Lingkungan Komputasi 

Seluruh proses pengolahan data dan pelatihan model dilakukan pada Google 
Colaboratory (Colab) dengan dukungan GPU untuk efisiensi pelatihan. Library utama: 
TensorFlow dan Keras, didukung NumPy, OpenCV, dan matplotlib. 

 
3.4. Arsitektur dan Penyetelan Model 

Tiga arsitektur pretrained (VGG16, ResNet50, InceptionV3) diimpor dari Keras 
Applications tanpa top layer. Pada bagian atas ditambahkan custom classifier yang terdiri dari 
GlobalAveragePooling2D, Dense beraktivasi ReLU, Dropout untuk regularisasi, dan Dense 
keluaran beraktivasi sigmoid untuk klasifikasi biner. Optimizer Adam dengan learning rate 
0,0001 dan loss Binary Crossentropy digunakan secara konsisten pada semua model. 

 
3.5. Protokol Pelatihan 
 Replikasi dikendalikan dengan penetapan random seed 42 pada Python, NumPy, dan 
TensorFlow. Early stopping diaktifkan dengan monitor val_recall, patience 5, dan pemulihan 
bobot terbaik. Pelatihan dibatasi pada maksimal 30 epoch; jumlah epoch aktual dilaporkan pada 
bagian Hasil. Pengukuran dilakukan pada input 100×100 RGB, batch size 32, optimizer Adam 
(1e4). Lingkungan komputasi didokumentasikan (versi TensorFlow/Keras, GPU/CPU yang 
digunakan) untuk transparansi evaluasi. Selain pelaporan pada ambang 0,50, dilakukan 
penelusuran ambang untuk memaksimalkan recall dengan kendala presisi minimum 0,90, 
berlandaskan kebutuhan skrining yang memprioritaskan penekanan false negative. 
 
3.6. Protokol Pengujian dan Metrik Evaluasi 
 Evaluasi pada testing set dilakukan menggunakan metrik: Akurasi, Presisi, Recall 
(Sensitivitas), F1-score, serta Confusion Matrix. Hasil tiap model disajikan dalam bentuk tabel 
dan grafik performa, termasuk visualisasi confusion matrix, untuk memudahkan perbandingan. 
 
3.7. Analisis Komparatif dan Statistik 
 perbandingan kinerja antar-model dilakukan dengan uji McNemar pada luaran biner 
(benar/salah) tiap sampel. Uji ini menguji hipotesis nol bahwa probabilitas kesalahan kedua 

model adalah sama, menggunakan tabel berpasangan dan statistik dengan koreksi 

kontinuitas. Selain nilai , ukuran efek yang relevan: proporsi pasangan diskordan yang 
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dimenangkan model A dan matched-pair odds ratio  beserta CI95% (pendekatan 
log-normal). 
 
4. Hasil dan Pembahasan 
4.1. Realisasi Dataset dan Pembagian Data 

Dataset yang digunakan berisi 27.558 citra, terdiri atas 13.779 kelas Parasitized dan 
13.779 kelas Uninfected. Dengan skema traintest 80:20 terstratifikasi: 
1) Training set: 22.046 citra 

Parasitized: 11.023 - Uninfected: 11.023 
2) Testing set: 5.512 citra  

Parasitized: 2.756 - Uninfected: 2.756 
Angka-angka ini bersifat deterministik dari total data dan proporsi split, sehingga dapat dipakai 
sebagai acuan tetap untuk seluruh eksperimen komparatif. 
 
4.2. Kapasitas Model dan Memori (FP32) 
 Perhitungan jumlah parameter dan estimasi ukuran bobot (FP32 ≈ 4 byte/parameter) 
terdapat pada tabel 1. 

Tabel 1. Perhitungan Jumlah Parameter 

Arsitektur Parameter (≈) Perkiraan Ukuran Bobot 

VGG16 138.357.544 ± 527,8 MB 
ResNet50 25.636.712 ± 97,8 MB 
InceptionV3 23.851.784 ± 91,0 MB 

 
Keterbatasan memori/penyimpanan, ResNet50 dan InceptionV3 relatif lebih ramah dibanding 
VGG16. 
 
4.3 Estimasi Beban Komputasi Relatif (Berbasis Skala Input) 
 GFLOPs absolut bergantung detail implementasi, beban komputasi konvolusi skala 
pertama dapat didekati dengan rasio luas input: 
1) Untuk model native 224×224 (VGG16, ResNet50), input 100×100 = 19,93% dari luasan 

224×224. 
2) Untuk native 299×299 (InceptionV3), input 100×100 = 11,19% dari luasan 299×299. 

Pada resolusi 100×100, ResNet50 dan VGG16 mengalami pengurangan beban 
komputasi hingga = 80%, sementara InceptionV3 hingga = 89% dari native resolution-nya. Ini 
sejalan dengan tujuan efisiensi komputasi di lingkungan terbatas. 
 
4.4 Realisasi Proses Pelatihan (Langkah per Epoch) 
 Dengan batch size = 32 dan |train| = 22.046, jumlah langkah per epoch (dibulatkan ke 
atas): 
1) Steps per epoch = ceil(22.046 / 32) = 689 langkah/epoch 
2) Jika durasi pelatihan direncanakan 30 epoch, total pembaruan gradien = 20.670 langkah. 

Untuk pelaporan efisiensi (waktu per epoch) dan reproduceability (early stopping 
berhenti di epoch ke-e dari 30). 
 
4.5 Hasil Uji 
 Hasil uji performa pada Testing Set dan Confusion Matrix per Model (n = 5.512; positif = 
2.756; negatif = 2.756) ditampilkan pada tabel 2 dan tabel 3. 
 

Tabel 2. Performa Testing Set 

Model Akurasi Presisi (Pos) Recall (Pos) F1 (Pos) AUC AP 

VGG16 0,9334 0,9690 0,8955 0,9308 0,9833 0,9846 
ResNet50 0,5372 0,5198 0,9775 0,6787 0,7675 0,8136 
InceptionV3 0,8862 0,9134 0,8534 0,8824 0,9546 0,9599 
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Tabel 3. Confusion Matrix per Model 

Model TP FP FN TN 

VGG16 2468 79 288 2677 
ResNet50 2694 2489 62 267 
InceptionV3 2352 223 404 2533 

 
Perhitungan dengan penerapan persamaan yang digunakan: 

VGG16 (TP=2468, FP=79, FN=288, TN=2677) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

,  
 
ResNet50 (TP=2694, FP=2489, FN=62, TN=267) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

,  
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InceptionV3 (TP=2352, FP=223, FN=404, TN=2533) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

,  
 
Visualisasi ROC dan PR 
 Digambarkan kurva ROC untuk model terbaik (VGG16) pada testing set dan 
mendapatkan AUC sebesar 0,9833 pada gambar 1. Selain kurva ROC, gambar 2 merupakan 
kurva Precision-Recall untuk menilai kinerja pada kelas positif. Reliability diagram menunjukkan 
kalibrasi probabilitas yang memadai. Kurva metrik vs ambang (Presisi, Recall, F1, Spesifisitas) 
menginformasikan trade-off operasional. 
 

    
 Gambar 1. Kurva ROC VGG16 Gambar 2. Kurva PR VGG16 
 
Hasil Boostrap CI 

Pada ambang 0,50, VGG16 memperoleh AUC 0,9833, AP 0,9846, Recall 0,8955, dan 
F1 0,9308. Estimasi ketidakpastian dengan bootstrap (1.000 ulangan) menunjukkan Recall 
mean 0,8956, CI95% [0,8843; 0,9077] dan F1 mean 0,9309, CI95% [0,9239; 0,9377], 
menandakan stabilitas kinerja pada titik operasi yang dilaporkan. 
 
Visualisasi Grad-CAM 

Memvisualisasikan Grad-CAM pada true positive (gambar 3) dan false negative 
(gambar 4) untuk memeriksa apakah attention model berfokus pada area sitoplasma eritrosit 
yang relevan dengan keberadaan parasit. 
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Gambar 3. VGG16 TP Image dan Grad-CAM 

 

 
Gambar 4. VGG16 FN Image dan Grad-CAM 

Grad-CAM 
Grad-CAM pada TP memperlihatkan pemusatan perhatian pada area eritrosit dengan 

indikasi parasit; pada FN, peta panas cenderung menyebar dan melemah pada wilayah target. 
Visual ini memperkuat interpretasi bahwa VGG16 mempertahankan detail lokal yang relevan 
bagi deteksi parasit, selaras dengan recall yang tinggi. 
 
Uji McNemar 

Definisi pada sampel uji yang sama di ambang 0,50: 
1) a: keduanya benar 
2) b: VGG16 salah, InceptionV3 benar 
3) c: VGG16 benar, InceptionV3 salah 
4) d: keduanya salah 
 
Untuk menghitung a dan d memakai total benar masing-masing model dan total N: 
1) Total benar VGG16 = TP+TN = 2468+2677 = 5145 → ini sama dengan a + c 
2) Total benar InceptionV3 = 2352+2533 = 4885 → ini sama dengan a + b 
3) Total sampel uji N = TP+FP+FN+TN = 5512 → ini sama dengan a + b + c + d 
4) Diketahui dari nilai ambang 0,50 dihasilkan b=172 dan c=432 
 
Maka: 

 

 
 

Tabel 4. 2x2 McNemar (Berpasangan)  
InceptionV3 Benar InceptionV3 Salah 

VGG16 Benar a = 4713 c = 432 
VGG16 Salah b = 172 d = 195 
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Statistik Uji McNemar dengan koreksi kontinuitas 

 
 

 
 

    

 

 
 

Ukuran Diskordan 

Jumlah diskordan =  
 

 
 

 
 
 

 

 
 

4.6 Pembahasan 
 Hasil menunjukkan bahwa VGG16 mencapai kinerja terbaik secara keseluruhan pada 
ambang 0,50, dengan AUC 0,9833, AP 0,9846, Recall 0,8955, dan F1 0,9308. Uji McNemar 
mengkonfirmasi bahwa perbedaan kinerja antara VGG16 dan InceptionV3 adalah signifikan 
secara statistik (χ²(1)=111.06; p<1×10⁻²⁴), dengan VGG16 memenangkan 71,5% dari kasus 
diskordan (OR=2,51). Estimasi bootstrap yang menghasilkan Recall (CI95% 0,8843–0,9077) 
dan F1 (CI95% 0,9239–0,9377) mengindikasikan stabilitas performa VGG16. 
 Temuan tingginya recall VGG16 (0,8955) sangat relevan dalam konteks klinis skrining 
malaria, di mana meminimalkan false negative (kasus terinfeksi yang terlewat) adalah prioritas 
utama [1]. Hasil melengkapi temuan Rajaraman et al. [12] menunjukkan keberhasilan transfer 
learning, penelitian ini memberikan hasil kuantitatif melalui perbandingan langsung dan uji 
statistik. Sementara Sinha & Gupta [13] melaporkan akurasi >98% dengan ResNet50, 
penelitian ini menemukan performa ResNet50 dengan (Akurasi 0,5372) karena tingginya false 
positive. Disparitas ini mungkin disebabkan oleh perbedaan protokol fine-tuning, augmentasi, 
atau skema evaluasi. 
 Dibandingkan dengan pendekatan ensemble yang kompleks seperti yang diusulkan 
Shahin et al. [15] (Akurasi 96,47%, F1 96,45%), VGG16 tunggal dalam penelitian ini mencapai 
F1 yang sebanding (0,9308) dengan kompleksitas dan kebutuhan komputasi yang lebih rendah. 
Hal ini menjadikan VGG16 sebagai kandidat praktis untuk implementasi di lingkungan sumber 
daya terbatas. Meskipun Mujahid et al. [14] menggunakan arsitektur yang lebih efisien 
(EfficientNet), penelitian ini menunjukkan arsitektur klasik seperti VGG16 masih kompetitif 
ketika dioptimalkan dengan protokol fine-tuning dan evaluasi yang berfokus pada recall. 
 Visualisasi Grad-CAM memberikan penjelasan mengapa VGG16 berkinerja baik pada 
true positive, model secara konsisten memusatkan pada area sitoplasma eritrosit yang 
mengandung parasit, sedangkan pada false negative perhatiannya cenderung menyebar. 
Namun, terdapat trade-off yang perlu dipertimbangkan meskipun unggul dalam recall dan AUC, 
VGG16 memiliki ukuran model terbesar (±528 MB) yang mungkin menjadi kendala untuk 
penyebaran di perangkat edge dengan memori terbatas. Untuk skenario tersebut, arsitektur 
seperti EfficientNet atau MobileNet dengan kalibrasi ulang ambang klasifikasi untuk 
mempertahankan recall tinggi, dapat menjadi alternatif yang lebih baik. 
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5. Simpulan 
 Penelitian ini menunjukkan bahwa VGG16 merupakan model paling andal untuk 
klasifikasi citra sel darah tepi malaria pada dataset NIH dalam ruang lingkup dan protokol 
evaluasi yang digunakan. Pada ambang 0,50, VGG16 mencapai AUC 0,9833, AP 0,9846, 
Recall 0,8955, dan F1 0,9308, serta secara statistik unggul atas InceptionV3 berdasarkan uji 
McNemar χ²(1)=111,0613; p<1×10⁻²⁴. Estimasi ketidakpastian melalui bootstrap menegaskan 
stabilitas performa (Recall mean 0,8956; CI95% 0,8843-0,9077 dan F1 mean 0,9309; CI95% 
0,92390,9377). Secara praktis, kombinasi sensitivitas tinggi dan keseimbangan presisirecall ini 
mengindikasikan bahwa VGG16 layak dipertimbangkan sebagai modul pra-skrining otomatis 
untuk mempercepat alur kerja di fasilitas laboratorium berdaya terbatas.  
 Ke depan, pekerjaan lanjut yang disarankan mencakup validasi eksternal pada citra 
lapangan dengan variasi pewarnaan, analisis robustnes terhadap pergeseran domain, 
penalaran ambang berbasis target (recall-first dengan batas presisi minimum), serta eksplorasi 
arsitektur efisien (MobileNetV3/EfficientNetV2) untuk menurunkan latensi inferensi pada 
perangkat terbatas. Dengan langkah-langkah tersebut, penerapan sistem skrining otomatis 
berbasis VGG16 berpotensi lebih kuat dan terukur di lingkungan penggunaan nyata. 
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