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Abstract

Malaria is a disease that requires fast and accurate diagnosis. This study compares three CNN
architectures VGG16, ResNet50, and InceptionV3 for malaria peripheral blood smear
classification using the public NIH dataset. The pipeline includes standardized preprocessing,
moderate augmentation, and transfer learning with early stopping (monitoring val_recall).
Evaluation on a stratified test set covers accuracy, precision, recall, F1, ROC-AUC, PR-AP,
confusion matrix, and paired statistics (McNemar). VGG16 yields the best performance at the
0.50 threshold (AUC 0.9833; AP 0.9846;, Recall 0.8955; F1 0.9308) and significantly
outperforms InceptionV3 (x*1)=111.06; p<1x107%). Bootstrap uncertainty (1.000 resamples)
gives Recall mean 0.8956 (95% CI 0.8843-0.9077) and F1 mean 0.9309 (95% CI 0.9239-
0.9377). Findings support a VGG16-based model as a feasible pre-screening module in
resource-constrained settings, emphasizing sensitivity to reduce false negatives.

Keywords: Malaria; Image classification; VGG16; RO-AUC; McNemar

Abstrak
Malaria merupakan penyakit yang memerlukan diagnosis cepat dan akurat. Penelitian ini
membandingkan tiga arsitektur CNN VGG 16, ResNet50, dan InceptionV3 untuk klasifikasi citra
apusan darah tepi malaria berbasis dataset publik N/H. Pipeline meliputi praproses terstandar,
augmentasi moderat, dan transfer learning dengan early stopping (monitor val_recall). Evaluasi
dilakukan pada himpunan uji terstratifikasi mengukur akurasi, presisi, recall, F1, ROC-AUC, PR-
AP, confusion matrix, serta uji statistik berpasangan (McNemar). VGG16 menunjukkan kinerja
terbaik pada ambang 0.50 (AUC 0.9833; AP 0.9846; Recall 0.8955; F1 0.9308) dan unggul
signifikan atas /InceptionV3 (x?(1)=111.06; p<1x10724). Estimasi ketidakpastian berbasis
bootstrap (1.000 ulangan) menghasilkan Recall mean 0.8956 (Cl195% 0.8843-0.9077) dan F1
mean 0.9309 (Cl95% 0.9239-0.9377). Temuan ini mendukung model berbasis VGG 16 sebagai
modul pra-skrining otomatis di lingkungan berdaya komputasi terbatas, dengan penekanan
pada sensitivitas untuk meminimalkan salah-negatif.
Kata kunci: Malaria; Klasifikasi citra; VGG16; ROC-AUC; McNemar

1. Pendahuluan

Malaria tetap menjadi isu kesehatan global yang kritis, membutuhkan diagnosis yang
cepat, konsisten, dan terukur untuk mencegah komplikasi fatal. Mikroskopi sebagai standar
emas diagnosis sangat bergantung pada kualitas preparat, keahlian teknis, ketahanan analis,
dan subijektivitas interpretasi, sehingga rentan menghasilkan false negative dengan dampak
serius [1]. Oleh karena itu, otomatisasi deteksi melalui deep learning menjadi solusi potensial
untuk meningkatkan akurasi dan kecepatan diagnosis.

Berbagai studi terdahulu telah menunjukkan keberhasilan Convolutional Neural
Network (CNN) berbasis transfer learning dalam klasifikasi citra medis, termasuk deteksi parasit
malaria [2][3]. Namun, mayoritas penelitian berfokus pada pelaporan akurasi agregat tanpa
menekankan metrik yang krusial dalam konteks skrining medis, seperti recall (sensitivitas) untuk
meminimalkan kasus terlewat (false negative). Selain itu, aspek efisiensi komputasi seperti
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ukuran model, waktu pelatihan, dan kebutuhan inferensi yang sangat penting untuk adopsi di
fasilitas kesehatan dengan sumber daya terbatas, seringkali kurang mendapat perhatian [4][5].

Berdasarkan gap tersebut, penelitian ini mengusulkan evaluasi komparatif yang
komprehensif terhadap tiga arsitektur CNN populer VGG16 [6], ResNet50 [7], dan InceptionV3
[8] dalam kerangka transfer learning. Ketiga arsitektur dipilih karena mewakili filosofi desain
yang berbeda seperti VGG 16 dengan konvolusi berulang dan dalam, ResNet50 dengan koneksi
residual untuk mitigasi vanishing gradient, dan InceptionV3 dengan modul multi-skala untuk
efisiensi komputasi [9][10][11]. Rasionalisasi pemilihan ini adalah untuk mengeksplorasi frade-
off antara akurasi, sensitivitas (recall), dan biaya komputasi dalam konteks yang seragam,
sehingga dapat memberikan rekomendasi yang tepat untuk implementasi di lapangan.

Tujuan penelitian ini adalah membangun dan mengevaluasi tiga model klasifikasi biner
(terinfeksi vs tidak terinfeksi) untuk deteksi malaria menggunakan transfer learning pada
arsitektur VGG16, ResNet50, dan InceptionV3, membandingkan kinerja model dengan
penekanan khusus pada metrik recall dan analisis statistik berpasangan, mengevaluasi efisiensi
komputasi masing-masing model dan memberikan insight interpretabilitas melalui visualisasi
Gradient-weighted Class Activation Mapping (Grad-CAM). Kontribusi penelitian diharapkan
tidak hanya pada ranah akademis berupa benchmark terstandarisasi, tetapi juga pada ranah
praktis berupa rekomendasi model yang feasible sebagai modul pra-skrining otomatis di
lingkungan sumber daya terbatas.

2. Tinjauan Pustaka

Tinjauan pustaka difokuskan pada penelitian-penelitian yang mengaplikasikan deep
learning, khususnya transfer learning, untuk deteksi malaria dari citra apusan darah.

Rajaraman et al. (2018) [12] mengevaluasi beberapa arsitektur CNN pretrained
(sebagai feature extractor dan fine-tuning) pada dataset citra apusan darah tipis malaria. Studi
ini melaporkan peningkatan akurasi klasifikasi dan menyoroti potensi transfer learning. Namun,
penelitian tersebut tidak melakukan komparasi mendalam antar arsitektur terkait metrik
sensitivitas (recall) dan efisiensi komputasi, serta tidak menguiji signifikansi statistik perbedaan
performa model.

Sinha & Gupta (2023) [13] mengimplementasikan transfer learning dengan ResNet50
untuk diagnosis malaria berbantuan komputer. Mereka melaporkan akurasi yang sangat tinggi
(>98%) pada tugas klasifikasi biner. Kelemahan studi ini adalah fokusnya yang terbatas hanya
pada satu arsitektur (ResNet50) tanpa perbandingan dengan alternatif lain, sehingga sulit
menilai keunggulan komparatifnya. Selain itu, analisis terbatas pada akurasi tanpa eksplorasi
mendalam terhadap recall atau precision.

Mujahid et al. (2024) [14] menggunakan arsitektur EfficientNet yang lebih modern untuk
deteksi malaria pada citra sel darah merah. Mereka mencapai akurasi 97,57% dan menekankan
stabilitas model. Meski menggunakan arsitektur efisien, penelitian ini tidak membandingkan
kinerjanya secara langsung dengan arsitektur klasik seperti VGG16 atau ResNet50 dalam
protokol eksperimen yang sama, sehingga trade-off antara performa dan efisiensi belum
terkuantifikasi secara jelas.

Shahin et al. (2025) [15] mengusulkan kerangka kerja ensemble yang menggabungkan
beberapa model (feature fusion) untuk deteksi malaria. Pendekatan ini menghasilkan akurasi
96,47% dan F1-score 96,45%. Kelemahan utama adalah kompleksitas sistem yang tinggi, baik
dalam pelatihan maupun inferensi, yang dapat menjadi kendala untuk penerapan real-time atau
di lingkungan dengan sumber daya komputasi terbatas.

Berdasarkan analisis terhadap penelitian terdahulu, penelitian ini berkontribusi pada
state of the art dengan beberapa aspek kebaruan pada perbandingan langsung dan adil antara
tiga arsitektur CNN (VGG16, ResNet50, InceptionV3) pada protokol yang seragam (dataset,
praproses, augmentasi, skema fine-tuning, dan set evaluasi). Hal ini jarang dilakukan secara
komprehensif dalam literatur sejenis kemudian bergeser dari fokus tradisional pada akurasi
agregat ke penekanan pada recall (sensitivitas), metrik yang paling kritis dalam skrining
penyakit untuk meminimalkan false negative. Analisis juga diperkaya dengan kurva ROC-AUC,
PR-AP, dan Confusion Matrix kemudian menggunakan Uji McNemar (uji statistik berpasangan
non-parametrik) untuk menguji signifikansi perbedaan kinerja model, yang memberikan
landasan statistik yang kuat atas klaim keunggulan suatu model. Selain itu, estimasi interval
kepercayaan (C/) melalui bootstrap dilakukan untuk mengkuantifikasi ketidakpastian dari metrik
utama (seperti Recall dan F1), meningkatkan robustnes pelaporan hasil lalu mengevaluasi
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secara eksplisit aspek efisiensi komputasi yang relevan untuk implementasi, seperti ukuran
model dalam memori dan estimasi beban komputasi relatif dan enyertakan analisis kualitatif
menggunakan Grad-CAM untuk memvisualisasikan daerah perhatian model, memberikan
insight tentang bagaimana model membuat keputusan.

3. Metodologi
3.1 Desain Penelitian

Penelitian bersifat deskriptifkomparatif dan dilaksanakan melalui eksperimen komputasi
terkontrol: setiap model dilatih dan diuji pada protokol yang sama agar hasil dapat dibandingkan
secara adil. Analisis dilakukan secara kuantitatif pada testing set dengan metrik klasifikasi
standar. Validitas internal dijaga melalui pemisahan data traintest 80:20 yang dilakukan secara
acak namun seimbang (stratified). Pendekatan transfer learning digunakan untuk melakukan
fine-tuning model CNN yang telah dilatih awal pada ImageNet.

3.2 Dataset dan Sumber Data

Data menggunakan NIH/LHNCBC Malaria Cell Images yang luas dipakai sebagai
benchmark terbuka. Dataset berisi 27.558 citra mikroskopik sel darah, terbagi merata antara
kelas Parasitized (13.779) dan Uninfected (13.779), dengan label yang jelas. Data diunduh dari
repositori resmi NIH, diekstrak, dan diperiksa untuk memastikan tidak ada berkas rusak atau
tidak relevan. Seluruh citra diproses seragam menjadi 100%x100 piksel (RGB). Prapemrosesan
meliputi: resize ke 100x100, normalisasi piksel ke rentang 0.01.0, /abel encoding
(Parasitized=1; Uninfected=0), dan augmentasi (flipping horizontal, rotasi, zoom, perubahan
kecerahan) yang hanya diterapkan pada fraining set. Pembagian 80% train / 20% test dilakukan
stratified menggunakan scikit-learn dan ImageDataGenerator.

3.3. Lingkungan Komputasi

Seluruh proses pengolahan data dan pelatihan model dilakukan pada Google
Colaboratory (Colab) dengan dukungan GPU untuk efisiensi pelatihan. Library utama:
TensorFlow dan Keras, didukung NumPy, OpenCV, dan matplotlib.

3.4. Arsitektur dan Penyetelan Model

Tiga arsitektur pretrained (VGG16, ResNet50, InceptionV3) diimpor dari Keras
Applications tanpa top layer. Pada bagian atas ditambahkan cusfom classifier yang terdiri dari
GlobalAveragePooling2D, Dense beraktivasi ReLU, Dropout untuk regularisasi, dan Dense
keluaran beraktivasi sigmoid untuk klasifikasi biner. Optimizer Adam dengan learning rate
0,0001 dan loss Binary Crossentropy digunakan secara konsisten pada semua model.

3.5. Protokol Pelatihan

Replikasi dikendalikan dengan penetapan random seed 42 pada Python, NumPy, dan
TensorFlow. Early stopping diaktitkan dengan monitor val recall, patience 5, dan pemulihan
bobot terbaik. Pelatihan dibatasi pada maksimal 30 epoch; jumlah epoch aktual dilaporkan pada
bagian Hasil. Pengukuran dilakukan pada input 100x100 RGB, batch size 32, optimizer Adam
(1e4). Lingkungan komputasi didokumentasikan (versi TensorFlow/Keras, GPU/CPU yang
digunakan) untuk transparansi evaluasi. Selain pelaporan pada ambang 0,50, dilakukan
penelusuran ambang untuk memaksimalkan recall dengan kendala presisi minimum 0,90,
berlandaskan kebutuhan skrining yang memprioritaskan penekanan false negative.

3.6. Protokol Pengujian dan Metrik Evaluasi

Evaluasi pada testing set dilakukan menggunakan metrik: Akurasi, Presisi, Recall
(Sensitivitas), F1-score, serta Confusion Matrix. Hasil tiap model disajikan dalam bentuk tabel
dan grafik performa, termasuk visualisasi confusion matrix, untuk memudahkan perbandingan.

3.7. Analisis Komparatif dan Statistik
perbandingan kinerja antar-model dilakukan dengan uji McNemar pada luaran biner
(benar/salah) tiap sampel. Uji ini menguji hipotesis nol bahwa probabilitas kesalahan kedua

model adalah sama, menggunakan tabel berpasangan (a,b,¢c,d)dan statistik )L’zdengan koreksi
kontinuitas. Selain nilai P, ukuran efek yang relevan: proporsi pasangan diskordan yang
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OR

e (&
dimenangkan model A (E)dan matched-pair odds ratio " b beserta CI95% (pendekatan

log-normal).

4. Hasil dan Pembahasan
4.1. Realisasi Dataset dan Pembagian Data
Dataset yang digunakan berisi 27.558 citra, terdiri atas 13.779 kelas Parasitized dan

13.779 kelas Uninfected. Dengan skema traintest 80:20 terstratifikasi:
1) Training set: 22.046 citra

Parasitized: 11.023 - Uninfected: 11.023
2) Testing set: 5.512 citra

Parasitized: 2.756 - Uninfected: 2.756
Angka-angka ini bersifat deterministik dari total data dan proporsi split, sehingga dapat dipakai
sebagai acuan tetap untuk seluruh eksperimen komparatif.

4.2. Kapasitas Model dan Memori (FP32)
Perhitungan jumlah parameter dan estimasi ukuran bobot (FP32 = 4 byte/parameter)
terdapat pada tabel 1.
Tabel 1. Perhitungan Jumlah Parameter
Arsitektur Parameter (=) Perkiraan Ukuran Bobot
VGG16 138.357.544 + 527,8 MB
ResNet50 25.636.712 + 97,8 MB
InceptionV3  23.851.784 +91,0 MB

Keterbatasan memori/penyimpanan, ResNet50 dan InceptionV3 relatif lebih ramah dibanding
VGG16.

4.3 Estimasi Beban Komputasi Relatif (Berbasis Skala Input)

GFLOPs absolut bergantung detail implementasi, beban komputasi konvolusi skala
pertama dapat didekati dengan rasio luas input:
1) Untuk model native 224x224 (VGG16, ResNet50), input 100x100 = 19,93% dari luasan

224%224.

2) Untuk native 299%299 (InceptionV3), input 100x100 = 11,19% dari luasan 299x299.

Pada resolusi 100x100, ResNet50 dan VGG16 mengalami pengurangan beban
komputasi hingga = 80%, sementara InceptionV3 hingga = 89% dari native resolution-nya. Ini
sejalan dengan tujuan efisiensi komputasi di lingkungan terbatas.

4.4 Realisasi Proses Pelatihan (Langkah per Epoch)
Dengan batch size = 32 dan |train| = 22.046, jumlah langkah per epoch (dibulatkan ke
atas):
1) Steps per epoch = ceil(22.046 / 32) = 689 langkah/epoch
2) Jika durasi pelatihan direncanakan 30 epoch, total pembaruan gradien = 20.670 langkah.
Untuk pelaporan efisiensi (waktu per epoch) dan reproduceability (early stopping
berhenti di epoch ke-e dari 30).

4.5 Hasil Uji
Hasil uji performa pada Testing Set dan Confusion Matrix per Model (n = 5.512; positif =
2.756; negatif = 2.756) ditampilkan pada tabel 2 dan tabel 3.

Tabel 2. Performa Testing Set
Model Akurasi Presisi (Pos) Recall (Pos) F1(Pos) AUC AP

VGG16 0,9334 0,9690 0,8955 0,9308 10,9833 0,9846
ResNet50 0,5372 0,5198 0,9775 0,6787 0,7675 0,8136
InceptionV3  0,8862 0,9134 0,8534 0,8824 0,9546 0,9599
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Tabel 3. Confusion Matrix per Model

Model TP FP_ FN TN

VGG16 2468 79 288 2677
ResNets0 2694 2489 62 267
InceptionV3 2352 223 404 2533

Perhitungan dengan penerapan persamaan yang digunakan:
VGG16 (TP=2468, FP=79, FN=288, TN=2677)

2468 4+ 2677 5145

Akurasi = 5512 =5512 =0,9334
poigj_ 2468 2468
TeSSt = o468 + 79 2547
poca . 2468 2468
et = o468+ 288 2756
2x2468 4936
- - 0,9308

Fl= =
2x2468 +79 4288 5303

2677 2677

Spesifisitas [TNR = 2677579 3756 09713
FPR = 79 = = 0,0287
T 79+ 2677 2756
288 288
FNR = 0,1045

~ 2468 + 288 2756
AUC=0,9833 AP =0,9846
ResNet50 (TP=2694, FP=2489, FN=62, TN=267)

2694 + 267 2961

Akurasi = 5513 =5512 = 00,5372
procici 2694 2694

TeSl = 5694 + 2489 5183
poca] - 2694 2694

et = 694+ 62 2756
Fl— 2x2694 538 _

T 2x2694 + 2489 + 62 7939

Spesifisitas /TNR = — 27 = 27 _ 4 5069

pesifisitas [TNR = 50— 85 = 2756 =
FPR 2489 2189 _ 0.9031

T 2489 + 267 2756
62 62

FNR — 0,0225

T 2694162 2756

AUC=0,7675 AP =10,8130
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InceptionV3 (TP=2352, FP=223, FN=404, TN=2533)

2352 + 2533 4885

Akurasi = 5512 =5512 = 0,8862
procici_ 2352 2882

TeSBl = o382+ 223 2575
Pocal 2352 2352 _ oo

e = 53521404 2756
o 2x2352 _aoe_

T 2x2352 + 223 + 404 5331

Spesifisitas JTNR 2533 2533 _ ho101

pesifisitas /TNR = Seaa——0 = 2756 ~
FPR 223 223 10,0809

" 223 +2533 2756
404 404

FNR = 0,1466

T 2352 +404 2756

AUC = 0,9546’ AP = 0,9599

Visualisasi ROC dan PR

Digambarkan kurva ROC untuk model terbaik (VGG16) pada testing set dan
mendapatkan AUC sebesar 0,9833 pada gambar 1. Selain kurva ROC, gambar 2 merupakan
kurva Precision-Recall untuk menilai kinerja pada kelas positif. Reliability diagram menunjukkan
kalibrasi probabilitas yang memadai. Kurva metrik vs ambang (Presisi, Recall, F1, Spesifisitas)
menginformasikan frade-off operasional.

ROC Curve — VGG16 Precision-Recall Curve — VGG16
1.0 A = 1.0

a rﬁ N

0.2 o 0.6

o
&

Precision
o
@

=3
n
=3
~

True Positive Rate

0ol ¥ —— VGG16 (AUC=0.983) 0.5 | — VvGG16 (AP=0.985)

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 L0
False Positive Rate Recall

Gambar 1. Kurva ROC VGG16 Gambar 2. Kurva PR VGG16

Hasil Boostrap CI

Pada ambang 0,50, VGG 16 memperoleh AUC 0,9833, AP 0,9846, Recall 0,8955, dan
F1 0,9308. Estimasi ketidakpastian dengan bootstrap (1.000 ulangan) menunjukkan Recall
mean 0,8956, CI95% [0,8843; 0,9077] dan F1 mean 0,9309, CI95% [0,9239; 0,9377],
menandakan stabilitas kinerja pada titik operasi yang dilaporkan.

Visualisasi Grad-CAM

Memvisualisasikan Grad-CAM pada ftrue positive (gambar 3) dan false negative
(gambar 4) untuk memeriksa apakah attention model berfokus pada area sitoplasma eritrosit
yang relevan dengan keberadaan parasit.
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VGG16 TP — Image VGG16 TP — Grad-CAM

Gambar 3. VGG16 TP Image dan Grad-CAM

VGG16 FN — Image VGG16 FN — Grad-CAM

Gambar 4. VGG16 FN Image dan Grad-CAM

Grad-CAM

Grad-CAM pada TP memperlihatkan pemusatan perhatian pada area eritrosit dengan
indikasi parasit; pada FN, peta panas cenderung menyebar dan melemah pada wilayah target.
Visual ini memperkuat interpretasi bahwa VGG716 mempertahankan detail lokal yang relevan
bagi deteksi parasit, selaras dengan recall yang tinggi.

Uji McNemar
Definisi pada sampel uji yang sama di ambang 0,50:
1) a: keduanya benar
2) b: VGG16 salah, InceptionV3 benar
3) c: VGG16 benar, InceptionV3 salah
4) d: keduanya salah

Untuk menghitung a dan d memakai total benar masing-masing model dan total N:
1) Total benar VGG16 = TP+TN = 2468+2677 = 5145 — ini sama dengan a + c
2) Total benar InceptionV3 = 2352+2533 = 4885 — ini sama dengan a + b

3) Total sampel uji N = TP+FP+FN+TN = 5512 — ini samadengana +b +c + d
4) Diketahui dari nilai ambang 0,50 dihasilkan b=172 dan c=432

Maka:
a={a+b)—b=4885—172 = 4713
d=N-—(a+b+c)=5512— (4713 + 172 +432) = 195

Tabel 4. 2x2 McNemar (Berpasangan)

InceptionV3 Benar InceptionVV3 Salah
VGG16 Benar a=4713 c =432
VGG16 Salah b=172 d=195

a+ ¢ = 5145 (VGG16),a + b = 4885 (Inceptionvd),a+b + ¢ +d = 5512
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Jutisi e-ISSN: 2685-0893 m 2197

Statistik Uji McNemar dengan koreksi kontinuitas
2
e (—d-1
b+c

2

(172 —432| — 1)* (260 —1)° 2597
C 172+432 604 604

2

= 111,0613

p — value untuk X2df =1
p =Pr(X3, = 111,0613) = 5,74x1072°
p =< 1x10~?* atau p < 0,001

Ukuran Diskordan
Jumlah diskordan = b +¢ = 172 + 432 = 604

c 432
—— =0,7152 (71,5%)

Winrate VGG16 = -
mrate b+c 604

c 432
Matched — pair odds ratio (OR) = OR = 5= T2 2,5116

CI95% OR (aproksimasi log — normal)

1 1
=m(OR) + 1,96 |E +E = CI195% = [2,105; 2,997]
N

4.6 Pembahasan

Hasil menunjukkan bahwa VGG76 mencapai kinerja terbaik secara keseluruhan pada
ambang 0,50, dengan AUC 0,9833, AP 0,9846, Recall 0,8955, dan F1 0,9308. Uji McNemar
mengkonfirmasi bahwa perbedaan kinerja antara VGG16 dan InceptionV3 adalah signifikan
secara statistik (x%(1)=111.06; p<1x1072¢), dengan VGG16 memenangkan 71,5% dari kasus
diskordan (OR=2,51). Estimasi bootstrap yang menghasilkan Recall (CI95% 0,8843-0,9077)
dan F1 (CI95% 0,9239-0,9377) mengindikasikan stabilitas performa VGG16.

Temuan tingginya recall VGG16 (0,8955) sangat relevan dalam konteks klinis skrining
malaria, di mana meminimalkan false negative (kasus terinfeksi yang terlewat) adalah prioritas
utama [1]. Hasil melengkapi temuan Rajaraman et al. [12] menunjukkan keberhasilan transfer
learning, penelitian ini memberikan hasil kuantitatif melalui perbandingan langsung dan uiji
statistik. Sementara Sinha & Gupta [13] melaporkan akurasi >98% dengan ResNet50,
penelitian ini menemukan performa ResNet50 dengan (Akurasi 0,5372) karena tingginya false
positive. Disparitas ini mungkin disebabkan oleh perbedaan protokol fine-tuning, augmentasi,
atau skema evaluasi.

Dibandingkan dengan pendekatan ensemble yang kompleks seperti yang diusulkan
Shahin et al. [15] (Akurasi 96,47%, F1 96,45%), VGG 16 tunggal dalam penelitian ini mencapai
F1 yang sebanding (0,9308) dengan kompleksitas dan kebutuhan komputasi yang lebih rendah.
Hal ini menjadikan VGG16 sebagai kandidat praktis untuk implementasi di lingkungan sumber
daya terbatas. Meskipun Mujahid et al. [14] menggunakan arsitektur yang lebih efisien
(EfficientNet), penelitian ini menunjukkan arsitektur klasik seperti VGG16 masih kompetitif
ketika dioptimalkan dengan protokol fine-tuning dan evaluasi yang berfokus pada recall.

Visualisasi Grad-CAM memberikan penjelasan mengapa VGG16 berkinerja baik pada
true positive, model secara konsisten memusatkan pada area sitoplasma eritrosit yang
mengandung parasit, sedangkan pada false negative perhatiannya cenderung menyebar.
Namun, terdapat trade-off yang perlu dipertimbangkan meskipun unggul dalam recall dan AUC,
VGG16 memiliki ukuran model terbesar (£528 MB) yang mungkin menjadi kendala untuk
penyebaran di perangkat edge dengan memori terbatas. Untuk skenario tersebut, arsitektur
seperti EfficientNet atau MobileNet dengan kalibrasi ulang ambang klasifikasi untuk
mempertahankan recall tinggi, dapat menjadi alternatif yang lebih baik.
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5. Simpulan

Penelitian ini menunjukkan bahwa VGG716 merupakan model paling andal untuk
klasifikasi citra sel darah tepi malaria pada dataset NIH dalam ruang lingkup dan protokol
evaluasi yang digunakan. Pada ambang 0,50, VGG16 mencapai AUC 0,9833, AP 0,9846,
Recall 0,8955, dan F1 0,9308, serta secara statistik unggul atas InceptionV3 berdasarkan uji
McNemar x3(1)=111,0613; p<1x10 2% Estimasi ketidakpastian melalui bootstrap menegaskan
stabilitas performa (Recall mean 0,8956; CI95% 0,8843-0,9077 dan F1 mean 0,9309; CI95%
0,92390,9377). Secara praktis, kombinasi sensitivitas tinggi dan keseimbangan presisirecall ini
mengindikasikan bahwa VGG16 layak dipertimbangkan sebagai modul pra-skrining otomatis
untuk mempercepat alur kerja di fasilitas laboratorium berdaya terbatas.

Ke depan, pekerjaan lanjut yang disarankan mencakup validasi eksternal pada citra
lapangan dengan variasi pewarnaan, analisis robustnes terhadap pergeseran domain,
penalaran ambang berbasis target (recall-first dengan batas presisi minimum), serta eksplorasi
arsitektur efisien (MobileNetV3/EfficientNetV2) untuk menurunkan latensi inferensi pada
perangkat terbatas. Dengan langkah-langkah tersebut, penerapan sistem skrining otomatis
berbasis VGG 16 berpotensi lebih kuat dan terukur di lingkungan penggunaan nyata.
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