Designing AI-Driven Consumer Outreach Strategies for Small-Scale Home Industries Using Big Data Insights
Abstract
Small-scale home industries face challenges in expanding consumer reach due to limited digital marketing capabilities. This study developed an Artificial Intelligence (AI)-driven consumer outreach strategy using big data analytics to address this issue. The strategy design focused on collecting, analyzing, and applying consumer data from various digital platforms to identify consumer behavior patterns and market preferences. Using machine learning algorithms, this model significantly enhanced marketing relevance and reach, enabling the acquisition of new consumers while retaining existing ones. The findings indicated that this big data and AI-based approach yielded substantial efficiency in reaching the target market segments. This strategy provides an innovative solution for small-scale home industries to improve competitiveness and retain a larger market share.
Keywords: Artificial Intelligence; Big data analytics; Consumer outreach; Small-scale home industries; Marketing strategy
Abstrak
Industri rumahan skala kecil menghadapi tantangan dalam memperluas jangkauan konsumen karena keterbatasan dalam kemampuan pemasaran digital. Studi ini mengembangkan strategi penjangkauan konsumen berbasis Kecerdasan Buatan (Artificial Intelligence/AI) dengan memanfaatkan analitik big data untuk mengatasi permasalahan tersebut. Perancangan strategi difokuskan pada pengumpulan, analisis, dan penerapan data konsumen dari berbagai platform digital guna mengidentifikasi pola perilaku konsumen dan preferensi pasar. Dengan menggunakan algoritma pembelajaran mesin (machine learning), model ini secara signifikan meningkatkan relevansi dan jangkauan pemasaran, memungkinkan perolehan konsumen baru sekaligus mempertahankan konsumen yang sudah ada. Temuan menunjukkan bahwa pendekatan berbasis big data dan AI ini memberikan efisiensi yang signifikan dalam menjangkau segmen pasar yang ditargetkan. Strategi ini menawarkan solusi inovatif bagi industri rumahan skala kecil untuk meningkatkan daya saing dan mempertahankan pangsa pasar yang lebih besar.
Keywords
References
D. Wertalik, “Social media and building a connected college,” Cogent Bus. Manag., vol. 4, no. 1, p. 1320836, Jan. 2017, doi: 10.1080/23311975.2017.1320836.
S. Hartmann and U. Klaschka, “Interested consumers’ awareness of harmful chemicals in everyday products,” Environ. Sci. Eur., vol. 29, no. 1, pp. 1-19, Dec. 2017, doi: 10.1186/s12302-017-0127-8.
T. Kato, “Functional value vs emotional value: A comparative study of the values that contribute to a preference for a corporate brand,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100024, Nov. 2021, doi: 10.1016/j.jjimei.2021.100024.
A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial network: An overview of theory and applications,” International Journal of Information Management Data Insights, vol. 1, no. 1. p. 100004, Elsevier Ltd, Apr. 01, 2021. doi: 10.1016/j.jjimei.2020.100004.
N. R. Aljohani, A. Aslam, A. O. Khadidos, and S. U. Hassan, “Bridging the skill gap between the acquired university curriculum and the requirements of the job market: A data-driven analysis of scientific literature,” J. Innov. Knowl., vol. 7, no. 3, p. 100190, Jul. 2022, doi: 10.1016/j.jik.2022.100190.
S. K. Medase and S. Abdul-Basit, “External knowledge modes and firm-level innovation performance: Empirical evidence from sub-Saharan Africa,” J. Innov. Knowl., vol. 5, no. 2, pp. 81–95, Apr. 2020, doi: 10.1016/j.jik.2019.08.001.
R. Lynch and Z. Jin, “Exploring the institutional perspective on international business expansion: Towards a more detailed conceptual framework,” J. Innov. Knowl., vol. 1, no. 2, pp. 117–124, May 2016, doi: 10.1016/j.jik.2016.01.001.
Y. Hu and Y. Wang, “Marketing research in China during the 40-year reform and opening,” Frontiers of Business Research in China, vol. 14, no. 1. pp. 1-29, Springer, Dec. 01, 2020. doi: 10.1186/s11782-019-0071-0.
S. Y. Kim and A. Upneja, “Majority voting ensemble with a decision trees for business failure prediction during economic downturns,” J. Innov. Knowl., vol. 6, no. 2, pp. 112–123, Apr. 2021, doi: 10.1016/j.jik.2021.01.001.
M. A. S. Khan, J. Du, H. A. Malik, M. M. Anuar, M. Pradana, and M. R. Bin Yaacob, “Green innovation practices and consumer resistance to green innovation products: Moderating role of environmental knowledge and pro-environmental behavior,” J. Innov. Knowl., vol. 7, no. 4, p. 100280, Oct. 2022, doi: 10.1016/j.jik.2022.100280.
A. K. Kar and P. S. Varsha, “Unravelling the techno-functional building blocks of metaverse ecosystems – A review and research agenda,” International Journal of Information Management Data Insights. Elsevier B.V., Vol. 3, no. 2, p. 100176, 2023. doi: 10.1016/j.jjimei.2023.100176.
Y. Sun, M. Shahzad, and A. Razzaq, “Sustainable organizational performance through blockchain technology adoption and knowledge management in China,” J. Innov. Knowl., vol. 7, no. 4, p. 100247, Oct. 2022, doi: 10.1016/j.jik.2022.100247.
C. F. Wiedenroth and V. Otter, “Can new healthy luxury food products accelerate short food supply chain formation via social media marketing in high-income countries?,” Agric. Food Econ., vol. 10, no. 1, p. 31, Dec. 2022, doi: 10.1186/s40100-022-00238-3.
A. Skotis, C. Morfaki, and C. Livas, “Identifying drivers of evaluation bias in online reviews of city destinations,” Int. J. Inf. Manag. Data Insights, vol. 3, no. 2, p. 100184, Nov. 2023, doi: 10.1016/j.jjimei.2023.100184.
S. Leng, S. W. Li, Z. Z. Hu, H. Y. Wu, and B. Bin Li, “Development of a micro-in-meso-scale framework for simulating pollutant dispersion and wind environment in building groups,” J. Clean. Prod., vol. 364, p. 132661, Sep. 2022, doi: 10.1016/j.jclepro.2022.132661.
S. Wang, J. Li, P. Du, and E. Zhao, “A game theoretic technique for risk-based optimal bidding strategies in energy aggregators of markets: Knowledge management approach,” J. Innov. Knowl., vol. 7, no. 4, p. 100279, Oct. 2022, doi: 10.1016/j.jik.2022.100279.
S. Zheng, P. Xu, and Z. Wang, “Are nutrition labels useful for the purchase of a familiar food? Evidence from Chinese consumers’ purchase of rice,” Front. Bus. Res. China, vol. 5, no. 3, pp. 402–421, Sep. 2011, doi: 10.1007/s11782-011-0137-0.
A. Kwangsawad and A. Jattamart, “Overcoming customer innovation resistance to the sustainable adoption of chatbot services: A community-enterprise perspective in Thailand,” J. Innov. Knowl., vol. 7, no. 3, p. 100211, Jul. 2022, doi: 10.1016/j.jik.2022.100211.
D. C. Gkikas, K. Tzafilkou, P. K. Theodoridis, A. Garmpis, and M. C. Gkikas, “How do text characteristics impact user engagement in social media posts: Modeling content readability, length, and hashtags number in Facebook,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 1, p. 100067, Apr. 2022, doi: 10.1016/j.jjimei.2022.100067.
D. Jain, M. K. Dash, A. Kumar, and S. Luthra, “How is Blockchain used in marketing: A review and research agenda,” International Journal of Information Management Data Insights, vol. 1, no. 2. p. 100044, 2021. Elsevier Ltd, doi: 10.1016/j.jjimei.2021.100044.
C. Wamsler, L. Mundaca, and G. Osberg, “Rethinking political agency: The role of individuals’ engagement, perceptions and trust in transitioning to a low-carbon transport system,” J. Clean. Prod., vol. 360, p. 132197, Aug. 2022, doi: 10.1016/j.jclepro.2022.132197.
S. Verma, L. Warrier, B. Bolia, and S. Mehta, “Past, present, and future of virtual tourism-a literature review,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, p. 100085, Nov. 2022, doi: 10.1016/j.jjimei.2022.100085.
A. K. Kushwaha, A. K. Kar, and Y. K. Dwivedi, “Applications of big data in emerging management disciplines: A literature review using text mining,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100017, Nov. 2021, doi: 10.1016/j.jjimei.2021.100017.
How To Cite This :
Refbacks
- There are currently no refbacks.