Prediksi Rating Game Menggunakan Algoritme C4.5 Berdasarkan Entertainment Software Rating Board

Rahmat Alfanza(1*),Sani Shalihamidiq(2),Ratna Mufidah(3),Betha Nurina Sari(4)
(1) Universitas Singaperbangsa Karawang
(2) Universitas Singaperbangsa Karawang
(3) Universitas Singaperbangsa Karawang
(4) Universitas Singaperbangsa Karawang
(*) Corresponding Author
DOI : 10.35889/progresif.v19i1.977

Abstract

Games can be played by all ages including children. If the game being played is not in accordance with the child's developmental period, it will have a negative impact on the child. Therefore, the rating on the game is very influential because if there is an error in rating the game, minors can play games that are not in accordance with their developmental needs. The purpose of this research is to create a machine learning model to predict game ratings using data from the ESRB (Entertainment Software Rating Board). This study uses the C4.5 classification algorithm and the python programming language. The data used in this study is game rating data taken from 2020 to 2022. The results of this study indicate that the machine learning model created can predict game ratings with a ratio of 70% training data and 30% testing data, with an accuracy rate of 86%.

Keywords: Game; Data Mining; Classification; Algorithm C4.5

 

Abstrak

Game dapat dimainkan oleh semua kalangan usia termasuk usia anak-anak. Jika game yang dimainkan tidak sesuai dengan masa kembang anak maka akan berdampak negatif kepada anak. Oleh sebab itu rating pada game sangat berpengaruh karena apabila terjadi kesalahan terhadap pemberian rating pada game anak dibawah umur dapat memainkan game yang tidak sesuai dengan kebutuhan tumbuh kembangnya. Tujuan penelitian ini adalah membuat model machine learning untuk memprediksi rating pada game dengan menggunakan data dari ESRB (Entertainment Software Rating Board). Penelitian ini menggunakan algoritme klasifikasi C4.5 dan bahasa pemrograman python. Data yang digunakan pada penelitian ini adalah data rating game yang diambil dari tahun 2020 sampai 2022. Hasil dari penelitian ini menunjukkan model machine learning yang dibuat dapat memprediksi rating game dengan perbandingan 70% data training dan 30% data testing, dengan tingkat akurasi sebesar 86%.

Kata kunci: Game; Data Mining; Klasifikasi; Algoritme C4.5

References


J. B. Funk, M. Chan, J. Brouwer, and K. Curtiss, “A biopsychosocial analysis of the video game-playing experience of children and adults in the United States,” SIMILE, vol. 6, no. 3, p. 1, 2016, doi: 10.3138/sim.6.3.001.

G. Aroni, “The Architecture of Assassin’s Creed II’s Florence,” Well Play. A J. Video Games, Values, Mean. (Connected Learn. Summit Spec. Issue), vol. 8, no. 1, pp. 13–26, 2019, [Online]. Available: http://press.etc.cmu.edu/.

K. M. Shihab, S. Sussi, R. Munadi, R. R. Prasojoe, and N. Fitriyanti, “Pembuatan Game Online BoMCleaN sebagai Media Pembelajaran Kebersihan Lingkungan,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 113, 2019, doi: 10.26418/jp.v5i1.29874.

M. Wragg, the playful citizen: civic engagement in a mediatized culture: edited by R. Glas, S. Lammes, M. de Lange, J. Raessens, and I. de Vries, Amsterdam, Amsterdam University Press, 2020,

T. Wibowo and K. Limanda, “Penggunaan Naratif Dalam Video Game Sebagai Media Edukasi Isu Dunia : Studi Kasus Detroit Become Human Use of Narrative in Video Games as Educational Media World Issue : Case Study Detroit Become Human,” J. Ilm. Komput. Graf., vol. 13, no. 2, pp. 1–6, 2020.

S. M. K. Al and D. Panceng, “Pengaruh Intensitas Bermain Game terhadap Konsentrasi Belajar Siswa A . Pendahuluan Belajar adalah kegiatan yang berproses dan merupakan unsur yang sangat mendasar dalam penyelenggaraan setiap jenis dan jenjang pendidikan . 1 Sehingga tanpa belajar sesung,” vol. 01, no. 02, pp. 112–119, 2020.

B. A. T. Atmoko, & J. Ellyawati, "Determinant of In-App Mobile Game Purchase Intention: An Empirical Study of Indonesian Mobile Gamer. In ICEBE 2020: Proceedings of the First International Conference of Economics, Business & Entrepreneurship, ICEBE 2020, 1st October 2020, Tangerang, Indonesia (p. 209). European Alliance for Innovation, 2021

V. A. Dihni, “Jumlah Gamers Indonesia Terbanyak Ketiga di Dunia,” Katadata, 2022. https://databoks.katadata.co.id/datapublish/2022/02/16/jumlah-gamers-indonesia-terbanyak-ketiga-di-dunia?utm_source=dable&utm_campaign=dable_Pilihan Editor Widget&utm_source=dable.

S. Badriah, M. Fajar, E. Nugroho, N. Sanjaya, and I. Rismawati, “Klasifikasi Algoritme C4 . 5 dalam Menentukan Penerima Bantuan Covid-19 ( Studi Kasus : Desa di Karawang ),” JIP (Jurnal Inform. Polinema, vol. 7, no. 3, pp. 23–28, 2019.

E. B. Sambani and F. Nuraeni, “Penerapan Algoritme C4.5 Untuk Klasifikasi Pola Penjurusan di Sekolah Menengah Kejuruan (SMK) Kota Tasikmalaya,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 9, no. 3, p. 144, Mar. 2018, doi: 10.22303/CSRID.9.3.2017.144-152.

A. Arora, B. Gupta, P. Uttarakhand, and I. A. Rawat, “Analysis of Various Decision Tree Algorithms for Classification in Data Mining Cite this paper Related papers Analysis of Classificat ion Techniques in Dat a Mining. ijesrt journal Dat a Mining Applicat ion in Enrollment Management : A Case St udy Saurabh,” Int. J. Comput. Appl., vol. 163, no. 8, pp. 975–8887, 2017.

S. Umadevi and K. S. J. Marseline, “A survey on data mining classification algorithms,” Proc. IEEE Int. Conf. Signal Process. Commun. ICSPC 2017, vol. 2018-Janua, no. July, pp. 264–268, 2018, doi: 10.1109/CSPC.2017.8305851.

H. J. Jiow, R. Athwa, L. L. Chew, M. H. Elias, N. Lim, and K. Woo, “Revisiting video game ratings: Shift from content-centric to parent-centric approach,” SHS Web Conf., vol. 33, p. 00065, 2017, doi: 10.1051/shsconf/20173300065.

D. A. Gentile, J. Humphrey, and D. A. Walsh, “Media ratings for movies, music, video games, and television: A review of the research and recommendations for improvements,” Adolesc. Med. Clin., vol. 16, no. 2 SPEC. ISS., pp. 427–446, 2015, doi: 10.1016/j.admecli.2005.02.006.

K. M. Thompson, K. Tepichin, and K. Haninger, “Content and ratings of mature-rated video games,” Arch. Pediatr. Adolesc. Med., vol. 160, no. 4, pp. 402–410, 2016, doi: 10.1001/archpedi.160.4.402.

D. Felini, “Beyond today’s video game rating systems: A critical approach to PEGI and ESRB, and proposed improvements,” Games Cult., vol. 10, no. 1, pp. 106–122, 2015, doi: 10.1177/1555412014560192.

K. M. Alomari, A. Q. Alhamad, H. O. Mbaidin, and S. Salloum, “Prediction of the digital game rating systems based on the ESRB [Predicción de los sistemas de clasificación de juegos digitales basados en el sistema de calificación ESRB],” Opcion, vol. 35, no. Special Issue 19, pp. 1368–1393, 2019, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068870131&partnerID=40&md5=646bdf7f8ad25726e514d0a48fb1818a.

P. C. Ncr et al., “Crisp-Dm,” SPSS inc, vol. 78, pp. 1–78, 2000, [Online]. Available: http://www.crisp-dm.org/CRISPWP-0800.pdf.

R. S. Putra, “Klasifikasi Penyebaran Covid-19 Menggunakan Algoritme C4.5 Kota Pagar Alam,” Jukomika, vol. 4, no. 1, pp. 23–35, 2021.

P. Singh, N. Singh, K. K. Singh, and A. Singh, “Diagnosing of disease using machine learning,” Mach. Learn. Internet Med. Things Healthc., pp. 89–111, 2021, Academic press, doi: 10.1016/B978-0-12-821229-5.00003-3.

A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data imbalance and solutions for a data democracy,” Data Democr. Nexus Artif. Intell. Softw. Dev. Knowl. Eng., pp. 83–106, Jan. 2020, doi: 10.1016/B978-0-12-818366-3.00005-8.


How To Cite This :

Refbacks

  • There are currently no refbacks.