Analisis Performa Metode Yolo Untuk Deteksi Hyperlipidemia Berdasarkan Klasifikasi Citra Corneal Arcus
Abstract
Hyperlipidemia is a medical condition with high blood lipid levels that increase the risk of cardiovascular disease. A physical indicator of hyperlipidemia is Corneal Arcus, a white ring around the cornea. This study analyzes the ability of the YOLO (You Only Look Once) method to detect and classify Corneal Arcus in eye images. The dataset consists of 348 eye images in three categories: normal, at-risk, and Corneal Arcus. Results show the YOLO model achieved 88.9% accuracy in detecting Corneal Arcus, with precision, recall, F1-score, and mean average precision (MAP) of 88.9%, 89.2%, 88.8%, and 88.9%, respectively. These findings indicate significant potential for the YOLO method in technical applications within informatics. Although not yet validated for medical use, this research aims to share basic scientific ideas.
Keywords: YOLO; Hyperlipidemia; Corneal Arcus; Image Classification
Abstrak
Hyperlipidemia adalah kondisi medis dengan kadar lipid darah tinggi yang meningkatkan risiko penyakit Kardiovaskular. Indikator fisik hyperlipidemia adalah Corneal Arcus, cincin putih di sekitar kornea. Penelitian ini menganalisis kemampuan metode YOLO (You Only Look Once) dalam mendeteksi dan mengklasifikasikan Corneal Arcus pada citra mata. Dataset terdiri dari 348 gambar mata dalam tiga kategori: normal, berisiko, dan Corneal Arcus. Hasil menunjukkan model YOLO mencapai akurasi 88,9% dalam mendeteksi Corneal Arcus, dengan presisi, recall, F1-score, dan mean average precision (MAP) masing-masing sebesar 88,9%, 89,2%, 88,8%, dan 88,9%. Temuan ini menunjukkan potensi besar metode YOLO dalam aplikasi teknis di bidang informatika. Meskipun belum tervalidasi untuk penggunaan medis, hasil ini bertujuan untuk membagikan ide ilmiah dasar.
Kata kunci: YOLO; Hyperlipidemia; Corneal Arcus; Klasifikasi Citra;
References
M. Yasuki, "Asuhan Keperawatan Kardiovaskuler pada Pasien Tn. A Post Percutaneous Coronary Intervention (PCI) dengan Diagnosa Medis Angina Pectoris Stabil CCS II dan Coronary Artery Disease (CAD) 3VD," Tugas Akhir, Fak. Keperawatan Univ. Hasanuddin, p. 40, 2021.
C. Yu et al., "G-YOLO: A YOLOv7-based target detection algorithm for lightweight hazardous chemical vehicles," PLoS One, vol. 19, no. 4, e0299959, Apr. 2024, doi: 10.1371/ journal.pone.0299959.
R. A. Ramlee, S. K. Subramaniam, S. B. Yaakob, A. S. F. Rahman, and N. M. Saad, "Corneal arcus classification for hyperlipidemia detection using gray level co-occurrence matrix features," in Journal of Physics: Conference Series, vol. 1432, no. 1, p. 012084, Jan. 2020, doi: 10.1088/1742-6596/1432/1/012084.
J. R. Terven and D. Córdova-Esparza, "A Comprehensive Review of YOLO: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and Knowledge Extraction, vol. 5, no 4, pp. 1680-1716.. Available: https://arxiv.org/abs/2304.00501
S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, "Comparative analysis of deep learning image detection algorithms," J. Big Data, vol. 8, no. 1, p. 66, Dec. 2021, doi: 10.1186/s40537-021-00434-w.
D. Sari, J. Raharjo, and L. Novamizanti, "Cholesterol Level Detection through Eye Image Using Fractal and Decision Tree," in IOP Conference Series: Materials Science and Engineering, vol. 982, no. 1, p. 012010, Dec. 2020, doi: 10.1088/1757-899X/982/1/012010.
T. Kocejko, J. Ruminski, M. Mazur-Milecka, M. Romanowska-Kocejko, K. Chlebus, and K. H. Jo, "Using convolutional neural networks for corneal arcus detection towards familial hypercholesterolemia screening," J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 9, pp. 7225-7235, 2022, doi: 10.1016/j.jksuci.2021.09.001.
B. Sofiandi, M. J. T. Raharjo, and K. Usman, "Identifikasi Pola Citra Iris Mata Untuk Mendeteksi Kelebihan Kadar Kolestrol Menggunakan Metode Gray Level Co-Occurrence Matrix (GLCM) dan Decision Tree," e-Proceeding Eng., vol. 6, no. 3, p. 10242, 2019.
S. A. Nurhusni, R. I. Adam, and C. Carudin, "Klasifikasi Kadar Kolesterol Menggunakan Ekstraksi Ciri Moment Invariant dan Algoritma K-Nearest Neighbor (KNN)," J. Appl. Informatics Comput., vol. 5, no. 2, pp. 169-175, 2021, doi: 10.30871/jaic.v5i2.3273.
L. Novamizanti, "Cholesterol Image," Harvard Dataverse, 2021. [Online]. Available: https://doi.org/10.34820/FK2/RYQ5EN
S. Mammadli, "Open-closed-eyes-dataset," Kaggle, 2021. [Online]. Available: https://www.kaggle.com/datasets/sehriyarmemmedli/open-closed-eyes-dataset
E. Febrywinata, "Pengenalan Dan Klasifikasi Jenis Buah Menggunakan Metode CNN Secara Sederhana Dengan Menggunakan Google Colab," Merkurius, vol. 2, no. 4, pp. 185-193, 2024, doi: 10.61132/merkurius.v2i4.162
M. Heydarian and T. E. Doyle, "MLCM: Multi-Label Confusion Matrix," IEEE Access, vol. 10, pp. 19083-19095, 2022, doi: 10.1109/ACCESS.2022.3150058.
F. Ramadhani, A. Satria, and S. Dewi, "Identifikasi Kendaraan Bermotor pada Dashcam Mobil Menggunakan Algoritma YOLO," Hello World J. Ilmu Komput., vol. 2, no. 4, pp. 199-206, 2024, doi: 10.56211/helloworld.v2i4.466.
R. F. Putra and D. I. Mulyana, “Optimasi Deteksi Objek Dengan Segmentasi dan Data Augmentasi Pada Hewan Siput Beracun Menggunakan Algoritma You Only Look Once (YOLO),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 93–103, 2024, doi: 10.35870/jtik.v8i1.1391.
How To Cite This :
Refbacks
- There are currently no refbacks.