Density-Based Spatial Clustering for Assessing Public Service Accessibility in Jombang Regency

Indana Lazulfa(1*),Reza Augusta Jannatul Firdaus(2),Anita Andriani(3),Muhammad Husein Hanafiyah(4),Lilis Karimatun Nisa'(5)
(1) Universitas Hasyim Asy’ari Tebuireng
(2) Universitas Hasyim Asy’ari Tebuireng
(3) Universitas Hasyim Asy’ari Tebuireng
(4) Universitas Hasyim Asy’ari Tebuireng
(5) Universitas Hasyim Asy’ari Tebuireng
(*) Corresponding Author
DOI : 10.35889/progresif.v22i1.3248

Abstract

The problem of unequal accessibility to public services between subdistricts in Jombang can hinder medium, long-term equitable development. Good accessibility indicates justice and improvements in quality of life in the area. In some subdistricts, school and health facilities are easy to reach, whereas in other areas, mountainous regions or border areas, accessibility is very low. This study aims to map accessibility clusters, analyze the data, and provide recommendations for priority intervention area using DBSCAN. The variables include population density, ratios of health facility, education and administrative facilities per area, geospatial public datasets such as road network density, elevation/slope and rivers. The results show three accessibility clusters (high, medium, and low) with variations in geographical constraints such as hills and major rivers that affect the distribution of services. The visualization shows that low-accessibility areas are generally located in peripheral and mountainous regions, whereas high accessibility is concentrated in the regency center.

Keywords: DBSCAN; Spatial clustering; Public service accessibility; Geospatial

 

Abstrak

Permasalahan ketimpangan aksesibilitas layanan publik antar kecamatan di Jombang dapat menghambat pemerataan pembangunan jangka menengah dan jangka panjang. Aksesibilitas yang baik mengindikasikan keadilan dan peningkatan kualitas hidup di wilayah tersebut. Di beberapa kecamatan, fasilitas sekolah dan kesehatan mudah dijangkau, sedangkan di daerah lain, pegunungan atau perbatasan, aksesibilitas sangat rendah. Kondisi ini menunjukkan adanya ketimpangan spasial yang perlu dianalisis lebih lanjut. Penelitian ini bertujuan untuk memetakan cluster aksesibilitas, menganalisis data hasil dan memberi rekomendasi lokasi prioritas intervensi. Clustering ini menggunakan metode DBSCAN. Variabel mencakup kepadatan penduduk, rasio fasilitas kesehatan, pendidikan, administrasi per wilayah, geospasial public dataset berupa kepadatan jaringan jalan, hambatan seperti elevasi/lereng dan sungai besar. Hasilnya terdapat tiga klaster aksesibilitas, yaitu tinggi, menengah, dan rendah, dengan variasi hambatan geografis seperti perbukitan dan sungai besar yang memengaruhi distribusi layanan. Visualisasi memperlihatkan bahwa daerah aksesibilitas rendah umumnya berada di wilayah pinggiran dan pegunungan, sedangkan aksesibilitas tinggi terkonsentrasi di pusat kabupaten.

Kata kunci: DBSCAN; Spasial clustering; Aksesibilitas layanan public; Geospasial

References


N. M. Mahfuz, M. Yusoff, and Z. Idrus, “Clustering Heterogeneous Categorical Data Using Enhanced Mini Batch K-Means With Entropy Distance Measure,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 1, pp. 1048–1059, Feb. 2023, doi: http://doi.org/10.11591/ijece.v13i1.pp1048-1059.

Badan Pusat Statistik Kab Jombang, “Kabupaten-Jombang-dalam-Angka-2025,” vol. 45, pp. 10–672, 2025.

Badan Pusat Statistik Kabupaten Jombang, “Profil Kemiskinan di Kabupaten Jombang Maret 2024,” Dec. 2024.

Y. Lv et al., “An Efficient and Scalable Density-based Clustering Algorithm for Datasets with Complex Structures,” Journal of Neurocomputing, vol. 171, no. 1, pp. 9–22, May 2015, doi: dx.doi.org/10.1016/j.neucom.2015.05.109.

A. Arranz-López, J. A. Soria-Lara, F. Witlox, and A. Páez, “Measuring relative non-motorized accessibility to retail activities,” Int J Sustain Transp, vol. 13, no. 9, pp. 639–651, Oct. 2019, doi: 10.1080/15568318.2018.1498563.

K. Cao, C. Zhou, R. Church, X. Li, and W. Li, “Revisiting spatial optimization in the era of geospatial big data and GeoAI,” International Journal of Applied Earth Observation and Geoinformation, vol. 129, p. 103832, 2024, doi: https://doi.org/10.1016/j.jag.2024.103832.

X. Tu, C. Fu, A. Huang, H. Chen, and X. Ding, “DBSCAN Spatial Clustering Analysis of Urban ‘Production–Living–Ecological’ Space Based on POI Data: A Case Study of Central Urban Wuhan, China,” Int J Environ Res Public Health, vol. 19, no. 9, pp. 5153–5174, Apr. 2022, doi: doi.org/10.3390/ijerph19095153.

G. Tóth and Á. Kincses, “Accessibility models based on the gravity analogy: In theory and practice,” Regional Statistics, vol. 5, no. 1, pp. 137–158, 2015, doi: 10.15196/RS05108.

R. Ramadhan, A. W. Wijayanto, and S. Pramana, “A Geospatial Big Data Approaches to Estimate Granular Level Poverty Distribution in East Java, Indonesia using Machine Learning and Deep Learning Regressions,” in Proceeding of 2023 International Conference On Data Science and Official Statistics (ICDSOS), Jakarta: Politeknik Statistika, Dec. 2023, p. 186200. doi: doi.org/10.34123/icdsos.v2023i1.359.

X. Du, Y. Du, Y. Zhang, Y. Zhu, and Y. Yang, “Urban And Rural Disparities in General Hospital Accessibility Within a Chinese Metropolis,” Sci Rep, vol. 14, no. 1, p. 23359, Dec. 2024, doi: 10.1038/s41598-024-74816-4.

W. Li, H. Li, and Y. Luo, “Dynamic and Static Enhanced BIRCH for Functional Data Clustering,” IEEE Access, vol. 11, pp. 111448–111465, Oct. 2023, doi: 10.1109/ACCESS.2023.3322929.

D. Syaputri, P. Herwina Noprita, and S. Romelah, “Implementation of K-Means Algorithm for Economic Distribution Clustering Base on Demographics of Population,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 1–6, Apr. 2021.

A. Z. Hardi and A. K. A. Murad, “Spatial Analysis of Accessibility for Public Transportation, A Case Study in Jakarta, Bus Rapid Transit System (Transjakarta), Indonesia,” Journal of Computer Science, vol. 19, no. 10, pp. 1190–1202, 2023, doi: 10.3844/jcssp.2023.1190.1202.

A. Comber et al., “A Route Map for Successful Applications of Geographically Weighted Regression,” Geogr Anal, vol. 55, no. 1, pp. 155–178, Jan. 2023, doi: 10.1111/gean.12316.

H. A. Salman, L. F. Ibrahim, and Z. Fayed, “Enhancing clustering technique with knowledge-based system to plan the social infrastructure services,” in ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, 2013, pp. 401–408. doi: 10.5220/0004391504010408.

K. N. Ahmed and T. A. Razak, “An Overview of Various Improvements of DBSCAN Algorithm in Clustering Spatial Databases An Overview of Various Improvements of DBSCAN Algorithm in Clustering Spatial Databases,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 5, no. 2, 2016.

Y. Zhang, “Large Data Oriented to Image Information Fusion Spark and Improved Fruit Fly Optimization Based on the Density Clustering Algorithm,” Advances in Multimedia, vol. 2023, pp. 1–14, Mar. 2023, doi: 10.1155/2023/5596605.

D. A. Keatley et al., “Behaviour Tracking: using Geospatial and Behaviour Sequence Analysis to Map Crime,” Security Journal, vol. 34, no. 1, pp. 184–201, Mar. 2021, doi: https://doi.org/10.1057/s41284-019-00216-3.

S. Miftahurrahmi, Zilrahmi, N. Amalita, and T. O. Mukhti, “DBSCAN Method in Clustering Provinces in indonesia Based on Crime Cases in 2022,” UNP Journal of Statistics and Data Science, vol. 2, no. 3, pp. 330–337, Aug. 2024.

A. M. Bagirov, R. M. Aliguliyev, and N. Sultanova, “Finding compact and well-separated clusters: Clustering using silhouette coefficients,” Journal of Pattern Recognition, vol. 135, no. 1, pp. 109144–109158, Nov. 2023, doi: 10.1016/j.patcog.2022.109144.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN,” Journal of ACM Transactions on Database Systems, vol. 42, no. 3, pp. 1–21, Jul. 2017, doi: https://doi.org/10.1145/3068335.

J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques, 4th ed. Cambridge, US: Morgan Kaufmann Publishers, Elsevier Inc, 2023. Accessed: Oct. 15, 2025. [Online]. Available: www.elsevier.com/books-and-journals


How To Cite This :

Refbacks

  • There are currently no refbacks.