Social Network and Sentiment Analysis for Social CRM Optimalization on Indonesian Digital Recruitment Platform
Abstract
The rapid growth of digital recruitment platforms in Indonesia has generated a large volume of user content on social media, serving as a vital data source for Social Customer Relationship Management (Social CRM) strategies. Consequently, the strategic insights that can be drawn may be limited. This study applied an integrated analytical approach combining Social Network Analysis (SNA) and lexicon-based sentiment analysis to evaluate public interactions regarding Jobstreet, Glints, and Dealls. The research methodology involved collecting data from platform X (previously known as Twitter) during the period of April 1-30, 2025, which was then analyzed using SNA with Gephi to identify influential actors through centrality metrics, alongside sentiment analysis to measure emotional polarity. The main findings revealed that Jobstreet possessed the healthiest conversational ecosystem, characterized by positive and neutral sentiment from its central actors. Glints exhibited sentiment polarization, and Dealls showed reputational vulnerability due to dominant negative sentiment from its influential users. It was concluded that the integration of these two methods provides a robust framework for designing more responsive and data-driven Social CRM strategies.
Keywords: Social Network Analysis; Sentiment Analysis; Social CRM; Digital Recruitment; Lexicon-Based Features.
Abstrak
Perkembangan pesat platform rekrutmen digital di Indonesia telah menghasilkan volume besar konten pengguna di media sosial, yang menjadi sumber data vital untuk strategi Social Customer Relationship Management (Social CRM). Sehingga hal ini dapat menyebabkan insight strategis yang bisa diambil menjadi terbatas. Penelitian ini menerapkan pendekatan analitis terpadu yang menggabungkan Social Network Analysis (SNA) dan analisis sentimen berbasis leksikon untuk mengevaluasi interaksi publik mengenai Jobstreet, Glints, dan Dealls. Metodologi penelitian melibatkan pengumpulan data dari platform X (sebelumnya dikenal dengan Twitter) selama periode 1-30 April 2025, yang kemudian dianalisis menggunakan SNA dengan Gephi untuk mengidentifikasi aktor berpengaruh melalui metrik sentralitas, serta analisis sentimen untuk mengukur polaritas emosional. Temuan utama mengungkapkan bahwa Jobstreet memiliki ekosistem percakapan paling sehat, ditandai oleh sentimen positif dan netral dari aktor-aktor sentralnya. Sebaliknya, Glints menunjukkan polarisasi sentimen, dan Dealls menunjukkan kerentanan reputasi karena sentimen negatif yang dominan dari para pengguna berpengaruhnya. Disimpulkan bahwa integrasi kedua metode ini menyediakan kerangka kerja yang kuat untuk merancang strategi Social CRM yang lebih responsif dan berbasis data.
Kata Kunci: Analisis Jaringan Sosial; Sentimen; Social CRM; Rekrutmen digital; Lexicon-Based Features.
References
A. Ibrahim, Ermatita, and Saparudin, “Social Customer Relationship Management as a Communication Tool for Academic Communities in Higher Education Institutions through Social Media,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 401–411, 2022, doi: 10.14569/IJACSA.2022.0130548.
A. Yasmin Siregar, “Implementasi Social Customer Relationship Management Dalam Meningkatkan Promosi Produk,” J. Data Anal. Information, Comput. Sci., vol. 1, no. 1, pp. 33-41, 2024.
D. L. Pham, H. Ahn, K. S. Kim, and K. P. Kim, “Process-Aware Enterprise Social Network Prediction and Experiment Using LSTM Neural Network Models,” IEEE Access, vol. 9, pp. 57922–57940, 2021, doi: 10.1109/ACCESS.2021.3071789.
A. N. Navisha, R. Ambarwati, and M. Hariasih, “Twitter Social Network Interaction As Customer Engagement In Competition For E-Commerce E-Health Performance In Indonesia,” J. Manajerial, vol. 10, no. 02, pp. 303-312, 2023, doi: 10.30587/jurnalmanajerial.v10i02.5279.
M. Janakova, “CRM to Support International Relationships in a Global Society,” SHS Web Conf., vol. 92, p. 06014, 2021, doi: 10.1051/shsconf/20219206014.
Z. Samira, Y. W. Weldegeorgise, and O. S. Osundare, “Development of an integrated model for SME marketing and CRM optimization,” vol. 6, no. 10, pp. 3209–3242, 2024, doi: 10.51594/ijmer.v6i10.1612.
M. S. Setatama and D. Tricahyono, Ir., M.M., Ph.D., “Implementasi Social Network Analysis pada Penyebaran Country Branding ‘Wonderful Indonesia,’” Indones. J. Comput., vol. 2, no. 2, pp. 91-112, 2017, doi: 10.21108/indojc.2017.2.2.183.
Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J. H. Cho, “A Survey on Centrality Metrics and Their Network Resilience Analysis,” IEEE Access, vol. 9, pp. 104773–104819, 2021, doi: 10.1109/ACCESS.2021.3094196.
N. Hafiene, W. Karoui, and L. Ben Romdhane, “Influential nodes detection in dynamic social networks: A survey,” Expert Syst. Appl., vol. 159, p. 113642, Nov. 2020, doi: 10.1016/J.ESWA.2020.113642.
S. Zhang, A. Hanjalic, and H. Wang, “Predicting nodal influence via local iterative metrics,” Sci. Rep., vol. 14, no. 1, p. 4929, Dec. 2024, doi: 10.1038/s41598-024-55547-y.
Y. Fauziah, B. Yuwono, and A. S. Aribowo, “Lexicon Based Sentiment Analysis in Indonesia Languages : A Systematic Literature Review,” RSF Conf. Ser. Eng. Technol., vol. 1, no. 1, pp. 363–367, Dec. 2021, doi: 10.31098/cset.v1i1.397.
Y. Nooryuda Prasetya and D. Winarso, “Penerapan Lexicon Based Untuk Analisis Sentimen Pada TwiterTerhadap Isu Covid-19,” J. Fasilkom, vol. 11, no. 2, pp. 97–103, 2021.
A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 115-124, 2022.
C. Ledro, A. Nosella, and A. Vinelli, “Artificial intelligence in customer relationship management: literature review and future research directions,” J. Bus. Ind. Mark., vol. 37, no. 13, pp. 48–63, 2022, doi: 10.1108/JBIM-07-2021-0332.
R. Cahyani and A. Diniati, “Strategi Social CRM Dalam Menangani Keluhan Pelanggan Pada Instagram Pos Indonesia,” WACANA J. Ilm. Ilmu Komun., vol. 23, no. 1, pp. 16–27, 2024, doi: 10.32509/wacana.v23i1.3109.
K. Alomar and H. AL-Rubaiee, “Using Sentiment Analysis of Arabic Tweets to Fine-Tune CRM Structure,” J. King Abdulaziz Univ. Comput. Inf. Technol. Sci., vol. 12, no. 1, pp. 37–50, 2023, doi: 10.4197/comp.12-1.4.
D. Malki, M. Bellahcene, H. Latreche, M. Terbeche, and R. Chroqui, “How social CRM and customer satisfaction affect customer loyalty,” Spanish J. Mark. - ESIC, vol. 28, no. 4, pp. 465–480, 2023, doi: 10.1108/SJME-09-2022-0202.
E. Akar, “Let’s Get United and #ClearTheShelters,” J. Inf. Technol. Res., vol. 15, no. 1, pp. 1–18, 2022, doi: 10.4018/jitr.299943.
Kun Sun, Han Wang and, and Jinsheng Zhang, “The impact factors of social media users’ forwarding behavior of COVID-19 vaccine topic: Based on empirical analysis of Chinese Weibo users,” Front. Public Heal., 2022.
C. T. Ba, M. Zignani, and S. Gaito, “The role of cryptocurrency in the dynamics of blockchain-based social networks: The case of Steemit,” PLoS One, vol. 17, no. 6 June, pp. 1–22, 2022, doi: 10.1371/journal.pone.0267612.
How To Cite This :
Refbacks
- There are currently no refbacks.