Model Sistem Pengering Tenaga Surya Berbasis IoT dengan ESP32 dan DHT-11

Gogor Christmass Setyawan(1*),Leonard Joseph Setyawan(2)
(1) Universitas Kristen Immanuel
(2) Universitas Negeri Yogyakarta
(*) Corresponding Author
DOI : 10.35889/progresif.v21i1.2398

Abstract

This study examines the development of a solar-powered drying system that integrates Internet of Things technology to increase the efficiency of drying agricultural products. The problems faced by small farmers, especially related to inefficiencies in drying methods, are the background for this research. The main objective is to design and implement a system that uses an ESP32 microcontroller and a DHT-11 sensor for real-time temperature and humidity monitoring. The applied methodology includes system design, prototype testing, and data analysis from field experiments. The results show that this system can increase drying efficiency by up to 30% compared to traditional methods. These findings confirm that the application of IoT technology in drying systems not only offers technical solutions, but also contributes to the welfare of small farmers by reducing post-harvest losses.

Keywords: Solar dryer system; Internet of Things; Drying efficiency; Small farmers; Reduction of post-harvest losses.

 

Abstrak

Studi ini meneliti pengembangan sistem pengering tenaga surya yang mengintegrasikan teknologi Internet of Things untuk meningkatkan efisiensi pengeringan hasil pertanian. Permasalahan yang dihadapi petani kecil, terutama terkait ketidakefisienan dalam metode pengeringan, menjadi latar belakang penelitian ini. Tujuan utama adalah merancang dan menerapkan sistem yang menggunakan mikrokontroler ESP32 dan sensor DHT-11 untuk pemantauan suhu dan kelembapan secara real-time. Metodologi yang diterapkan mencakup desain sistem, pengujian prototipe, dan analisis data dari eksperimen lapangan. Hasil menunjukkan bahwa sistem ini dapat meningkatkan efisiensi pengeringan hingga 30% dibandingkan metode tradisional. Temuan ini menegaskan bahwa penerapan teknologi IoT dalam sistem pengeringan tidak hanya menawarkan solusi teknis, tetapi juga berkontribusi pada kesejahteraan petani kecil dengan mengurangi kerugian pascapanen.

Kata kunci: Sistem pengering tenaga surya; Internet of Things; Efisiensi pengeringan; Petani kecil; Pengurangan kerugian pascapanen

References


S. M. Howden, J.-F. Soussana, F. N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke, “Adapting agriculture to climate change,” Proc. Natl. Acad. Sci., vol. 104, no. 50, pp. 19691–19696, Dec. 2007, doi: 10.1073/pnas.0701890104.

A. De Pinto, N. Cenacchi, H.-Y. Kwon, J. Koo, and S. Dunston, “Climate smart agriculture and global food-crop production,” PLOS ONE, vol. 15, no. 4, p. e0231764, Apr. 2020, doi: 10.1371/journal.pone.0231764.

A. Katkam, K. V. S. S. Gelli, and C. Joydeb, “Design of an IoT based monitoring device & framework for reducing postharvest losses in tomatoes,” presented at the 28TH International Meeting Of Thermophysics 2023, in 03L. Dalešice, Czech Republic, 2024, p. 020021. doi: 10.1063/5.0197330.

L. J, L. S. V. S, M. R, and M. R, “Automated food grain monitoring system for warehouse using IOT,” Meas. Sens., vol. 24, p. 100472, Dec. 2022, doi: 10.1016/j.measen.2022.100472.

M. Palumbo et al., “Emerging Postharvest Technologies to Enhance the Shelf-Life of Fruit and Vegetables: An Overview,” Foods, vol. 11, no. 23, p. 3925, Dec. 2022, doi: 10.3390/foods11233925.

M. U. Hasan et al., “Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review,” J. Food Process. Preserv., vol. 43, no. 12, Dec. 2019, doi: 10.1111/jfpp.14280.

B. López-Velasco, A. Ruiz-Garcia, J. G. Cebada-Reyes, and C. A. Villaseñor-Perea, “IoT-based Environmental Monitoring and Prediction of Banana Moisture Content in a Solar Greenhouse Dryer,” IEEE Lat. Am. Trans., vol. 22, no. 10, pp. 881–890, Oct. 2024, doi: 10.1109/TLA.2024.10705969.

P. Saraswathi, S. Anandhika, M. Hannah Nissi, M. Prabha, A. Poornima Srinithi, and B. Dhiyanesh, “Precision Farming: A Temperature and Humidity Monitoring Approach,” in 2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN), in 08L. Dhulikhel, Nepal: IEEE, Jul. 2024, pp. 698–702. doi: 10.1109/ICIPCN63822.2024.00121.

R. Rajora, A. Rajora, R. Singh, and R. Gupta, “IoT Integration in Agricultural Infrastructure: From Fields to Clouds,” in 2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE), in 09L. Chennai, India: IEEE, Nov. 2023, pp. 1–5. doi: 10.1109/RMKMATE59243.2023.10369026.

S. Joshi, M. Sharma, D. Kaushal, A. Misra, P. Gupta, and S. Gopal, “Optimizing Productivity and Efficiency in Agriculture through the Integration of Digital Technologies: A Smart Agriculture Perspective,” in 2023 9th International Conference on Smart Computing and Communications (ICSCC), in 10L. Kochi, Kerala, India: IEEE, Aug. 2023, pp. 119–125. doi: 10.1109/ICSCC59169.2023.10335086.

N. Aji, Nazuwatussya’diyah, and E. Joelianto, “IoT-Based Temperature and Relative Humidity Monitoring System Using Simple Network Management Protocol,” in 2021 International Conference on Instrumentation, Control, and Automation (ICA), in 11L. Bandung, Indonesia: IEEE, Aug. 2021, pp. 174–179. doi: 10.1109/ICA52848.2021.9625689.

P. Macheso, S. Chisale, C. Daka, N. Dzupire, J. Mlatho, and D. Mukanyirigira, “Design of Standalone Asynchronous ESP32 Web-Server for Temperature and Humidity Monitoring,” in 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), in 12L. Coimbatore, India: IEEE, Mar. 2021, pp. 635–638. doi: 10.1109/ICACCS51430.2021.9441845.

S. Balachandran, D. W. R. Bautista, B. Edward, V. Herald Wilson, and J. Swaminathan, “Design and Analysis of IOT-based Solar Dryer for Sustainable Farming,” in 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), in 13L. Kuala Lumpur, Malaysia: IEEE, Dec. 2023, pp. 1–8. doi: 10.1109/i-PACT58649.2023.10434625.

S. Vijh, Arpita, J. P. Bora, P. K. Gupta, and S. Kumar, “IOT Based Real-Time Monitoring System for Precision Agriculture,” in 2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence), in 14L. Noida, India: IEEE, Jan. 2024, pp. 53–58. doi: 10.1109/Confluence60223.2024.10463399.

H. Shahab, M. Iqbal, A. Sohaib, F. Ullah Khan, and M. Waqas, “IoT-based agriculture management techniques for sustainable farming: A comprehensive review,” Comput. Electron. Agric., vol. 220, p. 108851, May 2024, doi: 10.1016/j.compag.2024.108851.

C. Teng, K. Lyu, M. Zhu, and C. Zhang, “Impact of Conservation Tillage Technology Application on Farmers’ Technical Efficiency: Evidence from China,” Agriculture, vol. 13, no. 6, p. 1147, May 2023, doi: 10.3390/agriculture13061147.

R. Dhillon and Q. Moncur, “Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements,” Sustainability, vol. 15, no. 21, p. 15478, Oct. 2023, doi: 10.3390/su152115478.

A. Spagnuolo et al., “Industrial Drying of Fruit and Vegetable Products: Customized Smart Monitoring and Analytical Characterization of Process Variables in the OTTORTO Project,” Processes, vol. 11, no. 6, p. 1635, May 2023, doi: 10.3390/pr11061635.

A. Ali, T. Hussain, N. Tantashutikun, N. Hussain, and G. Cocetta, “Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production,” Agriculture, vol. 13, no. 2, p. 397, Feb. 2023, doi: 10.3390/agriculture13020397.


How To Cite This :

Refbacks

  • There are currently no refbacks.