Model Pembeda Sampah Organik dan Anorganik dengan Machine Learning berbasis Phyton

Ika Aprilia(1),Budi Rahmani(2*)
(1) STMIK Banjarbaru
(2) STMIK Banjarbaru
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i3.3182

Abstract

This research developed an artificial intelligence-based system to differentiate between organic and inorganic waste using a Convolutional Neural Network (CNN) model. The problem addressed is the community's limited understanding of how to properly separate types of waste, which contributes to environmental pollution. The methodology employed includes data collection of waste images, training the CNN model, and system testing. The test results showed that the model achieved an accuracy of 75%, with a precision of 78% and a recall of 70%. These findings suggest that the developed system can help the community better understand and separate waste more effectively. This research makes a positive contribution to waste management and is expected to serve as a foundation for further development in waste classification technology.

Keywords: Artificial intelligence; Convolutional Neural Network; Waste separation; Environmental management; Machine learning

 

Abstrak

Penelitian ini mengembangkan sistem berbasis kecerdasan buatan untuk membedakan sampah organik dan anorganik menggunakan model Convolutional Neural Network (CNN). Permasalahan yang dihadapi adalah rendahnya pemahaman masyarakat dalam memisahkan jenis sampah, yang berdampak pada pencemaran lingkungan. Metodologi yang digunakan meliputi pengumpulan data gambar sampah, pelatihan model CNN, dan pengujian sistem. Hasil pengujian menunjukkan bahwa model mencapai akurasi 75%, dengan presisi 78% dan recall 70%. Temuan ini menunjukkan bahwa sistem yang dikembangkan dapat membantu masyarakat dalam memahami dan memisahkan sampah dengan lebih baik. Penelitian ini memberikan kontribusi positif terhadap pengelolaan sampah dan diharapkan dapat menjadi dasar untuk pengembangan lebih lanjut dalam teknologi klasifikasi sampah.

 

Keywords


Kecerdasan buatan; Convolutional Neural Network; Pemisahan sampah; Pengelolaan lingkungan; Machine learning

References


L. Harmaji and Khairullah, “Rancang Bangun Tempat Pemilah Sampah Logam dan Non Logam Otomatis Berbasis Mikrokontroler,” Progresif J. Ilm. Komput., vol. 15, no. 2, pp. 73–82, 2019.

A. Ikhlas and B. Hendrik, “Literature Review: A Comparative Study of Waste Classification using Deep Learning Algorithms,” Sist. J. Sist. Inf., vol. 14, no. 3, p. 1360, 2025, doi: 10.32520/stmsi.v14i3.5163.

F. Tanadi, Implementasi Convolutional Neural Network dalam Sistem Klasifikasi Gambar Sampah Berbasis Website, Skripsi, Universitas Multimedia Nusantara, 2023.

A. Tia Sari, E. Nurlatifah, T. Informatika, and U. Sunan Gunung Djati Bandung, “Penerapan Convolutional Neural Network untuk Mengklasifikasikan Citra Sampah Organik dan Non Organik,” J. Ilm. Tek. Inform. dan Sist. Inf., vol. 14, pp. 1–11, 2025.

K. M. Sandi, A. P. Yudha, N. D. Aryanto, and M. A. Farabi, “Klasifikasi Sampah di Saluran Air Menggunakan Algoritma CNN,” Indones. J. Data Sci., vol. 3, no. 2, pp. 72–81, 2022, doi: 10.56705/ijodas.v3i2.33.

A. Kurniawan and S. Maesaroh, Pengklasifikasian Citra Sampah Organik dan Anorganik Menggunakan Algoritma Convolutional Neural Network, Artikel, 2023.

M. A. Kalam, M. N. I. Mondal, and B. Ahmed, “Rotation Independent Digit Recognition in Sign Language,” in Proc. Int. Conf. Electr., Comput. Commun. Eng. (ECCE), 2019, pp. 1–5, doi: 10.1109/ECACE.2019.8679172.

A. N. Alhawsawi, S. D. Khan, and F. Ur Rehman, “Crowd Counting in Diverse Environments Using a Deep Routing Mechanism Informed by Crowd Density Levels,” Information, vol. 15, no. 5, pp. 1–22, 2024, doi: 10.3390/info15050275.

M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 532–548, 2019, doi: 10.1109/TPAMI.2019.2937086.

S. Gaikwad et al., “Deep Learning Framework for Precision Grading and Non-Invasive Apple Sweetness Evaluation,” Polish Marit. Res., vol. 30, no. 3, pp. 48–58, 2023, doi: 10.2478/ijssis-2025-0007.

M. Fiandeiro, T. T. Nguyen, H. Wong, and E. B. Hsu, “Modernized Crowd Counting Strategies for Mass Gatherings—A Review,” J. Acute Med., vol. 13, no. 1, pp. 4–11, 2023, doi: 10.6705/j.jacme.202303_13(1).0002.

S. Gaikwad and S. Kothari, “Deep Learning Framework for Precision Grading and Non-Invasive Apple Sweetness Evaluation,” Int. J. Smart Sens. Intell. Syst., vol. 18, no. 1, 2025, doi: 10.2478/ijssis-2025-0007.

R. Dikairono, S. Setiawardhana, D. Purwanto, and T. A. Sardjono, “CNN-Based Self Localization Using Visual Modelling of a Gyrocompass Line Mark and Omni-Vision Image for a Wheeled Soccer Robot Application,” Int. J. Intell. Eng. Syst., vol. 13, no. 6, pp. 442–453, 2020, doi: 10.22266/ijies2020.1231.39.

M. Mathew, M. Jain, and C. V. Jawahar, “Benchmarking Scene Text Recognition in Devanagari, Telugu and Malayalam,” in Proc. 14th IAPR Int. Conf. Document Analysis and Recognition (ICDAR), vol. 7, pp. 42–46, 2017, doi: 10.1109/ICDAR.2017.364.

A. I. Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, pp. 142–149, 2022, doi: 10.28932/jutisi.v8i1.4314.

P. Pattaranuprawat and R. Lipikorn, “Text Localization and Extraction from Background with Texture and Noise in Digital Images Using Adaptive Thresholding and Convolutional Neural Network,” in Proc. 23rd Int. Comput. Sci. Eng. Conf. (ICSEC), 2019, pp. 357–360, doi: 10.1109/ICSEC47112.2019.8974808.

P. Kalange and M. Mutalikdesai, “Deep Learning Through Convolutional Neural Networks,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 1463–1465, 2019, doi: 10.35940/ijrte.B3770.098319.

H. Zuo, J. Tang, and P. Han, “A New Type Method of Adhesive Handwritten Digit Recognition Based on Improved Faster RCNN,” in Proc. IEEE Int. Conf. Signal Image Process., 2020, pp. 42–45, doi: 10.1109/ICSIP49896.2020.9339270.

B. Rahmani and S. Supriyadi, “Early Model of Traffic Sign Reminder Based on Neural Network,” TELKOMNIKA (Telecommun. Comput. Electron. Control), vol. 10, no. 4, p. 749, 2012, doi: 10.12928/telkomnika.v10i4.864.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.