Implementasi Algortima Support Vector Machine Dalam Klasifikasi Komentar Pengguna Produk Skintific di E-Commerce

Priti Rindi Artika(1*),Aidil Halim Lubis(2)
(1) Universitas Islam Negeri Sumatera Utara
(2) Universitas Islam Negeri Sumatera Utara
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i2.3137

Abstract

The large number of consumer reviews of skincare products such as Skintific 5X Ceramide Barrier Repair Moisture Gel on e-commerce platforms raises the need for automated sentiment analysis. This study classifies 2,000 user comments from the Sociolla app using the Support Vector Machine (SVM) algorithm. Data were obtained through web scraping and processed through preprocessing, lexicon-based labeling, and word weighting using TF-IDF. SVM with a linear kernel was used to distinguish positive and negative comments. Performance evaluation using a confusion matrix resulted in an accuracy of 89.73%, a precision of 0.94, a recall of 0.75, and an F1-score of 0.83 for the positive class, and a precision of 0.88, a recall of 0.98, and an F1-score of 0.93 for the negative class. These results indicate that SVM is effective for sentiment classification in online beauty product reviews.

Keywords: E-commerce; Support Vector Machine; Sentiment Analysis; TF-IDF; Sociolla; Skintific; Lexicon-based

 

Abstrak

Banyaknya ulasan konsumen terhadap produk perawatan kulit seperti Skintific 5X Ceramide Barrier Repair Moisture Gel di platform e-commerce menimbulkan kebutuhan akan analisis sentimen otomatis. Penelitian ini mengklasifikasikan 2000 komentar pengguna dari aplikasi Sociolla menggunakan algoritma Support Vector Machine (SVM). Data diperoleh melalui web scraping dan diproses dengan tahapan preprocessing, pelabelan berbasis lexicon, serta pembobotan kata menggunakan TF-IDF. SVM dengan linear kernel digunakan untuk membedakan komentar positif dan negatif. Evaluasi performa menggunakan confusion matrix menghasilkan akurasi sebesar 89,73%, precision 0,94, recall 0,75, dan F1-score 0,83 untuk kelas positif, serta precision 0,88, recall 0,98, dan F1-score 0,93 untuk kelas negatif. Hasil ini menunjukkan bahwa SVM efektif untuk klasifikasi sentimen pada ulasan produk kecantikan secara daring.

 

Keywords


Kata kunci: E-commerce; Support Vector Machine; Analisis Sentimen; TF-IDF; Sociolla; Skintific; Lexicon-based

References


N. Dwi Arviana, I. Baidlowi, and M. S. Hidayat, “Pengaruh Strategi Green Marketing, Green Product dan Green Brand terhadap Keputusan Pembelian Produk Kecantikan Ramah Lingkungan,” Journal of Management and Social Sciences, vol. 3, no. 3, pp. 104–117, Aug. 2024, doi: 10.55606/jimas.v3i3.1437.

N. A. Ulfah, “Korelasi Rambut Berwarna dengan Stigma Kecantikan Perempuan Urban : Studi Kasus Kota Semarang,” Jurnal Multimedia Dehasen, vol. 3, no. 4, pp. 307–316, 2024, doi: 10.37676/mude.v3i4.6511.

O. Wardatus Shalihah, A. Irvie Aranda Alben Susanto, E. Permana, U. Pancasila, and J. Selatan, “Strategi Pengembangan Pemasaran Digital Produk Make-Up Wardah Pada Platform Media Sosial,” Journal of Innovation Research and Knowledge, vol. 4, no. 11, pp. 8485–8498, 2025.

I. Komang Dharmendra, I. Made, A. W. Putra, and Y. P. Atmojo, “Evaluasi Efektivitas SMOTE dan Random Under Sampling pada Klasifikasi Emosi Tweet,” Informatics for Educators And Professionals : Journal of Informatics, vol. 9, no. 2, pp. 192–193, 2024, doi: 10.51211/itbi.v9i2.

R. C. Larasati, C. Dewi, and H. J. Christanto, “Analisis Sentimen Produk Kecantikan Jenis Moisturizer Di Twitter Menggunakan Algoritma Super Vector Machine,” Jurnal TEKINKOM, vol. 7, no. 1, pp. 124–134, 2024, doi: 10.37600/tekinkom.v7i1.1243.

B. A. Maulana, M. J. Fahmi, A. M. Imran, and N. Hidayati, “Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 375–384, Feb. 2024, doi: 10.57152/malcom.v4i2.1206.

F. M. Herza, B. Rahmat, and M. M. AL Haromainy, “Pengaruh Rfe Terhadap Logistic Regression Dan Support Vector Machine Pada Analisis Sentimen Hotel Shangri-La Surabaya,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 6, pp. 11612–11619, 2024, doi: 10.36040/jati.v8i6.11272.

B. A. B. Ralahallo, “PERAN MEDIA SOSIAL DALAM MENINGKATKAN PENJUALAN PADA PLAFORM E-COMMERCE DI INDONESIA,” JIRK Journal of Innovation Research and Knowledge, vol. 5, no. 1, 2025.

Q. Ayuni, R. Cahya Wihandika, and N. Yudistira, “Klasifikasi Aritmia Dari Hasil Elektrokardiogram Menggunakan Metode Support Vector Machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 6, pp. 2163–2170, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

G. N. C. Nugroho, “Klasifikasi Gender Berdasarkan Sidik Jari Menggunakan Principal Component Analysis dan Support Vector Machine,” JIEET (Journal Information Engineering and Educational Technology), vol. 8, no. 1, pp. 45–53, 2024, doi: 10.26740/jieet.v8n1.p45-53.

J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” Jurnal Komputer dan Informatika, vol. 11, no. 2, pp. 195–202, Oct. 2023, doi: 10.35508/jicon.v11i2.12571.

A. R. Damanik, S. Annisa, A. I. Rafeli, A. S. Liana, and D. S. Prasvita, “Klasifikasi Jenis Buah Cherry Menggunakan Support Vector Machine (SVM) Berdasarkan Tekstur dan Warna Citra,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 2022. [Online]. Available: https://www.kaggle.com/moltean/fruits

B. Pamungkas, M. E. Purbaya, and D. A. K. Januarita, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine (SVM) pada Kasus Benih Lobster 2020,” Journal of Informatics, Information System, Software Engineering and Applications, vol. 3, no. 2, pp. 10–20, 2021, doi: 10.20895/INISTA.V3I2.

M. R. B. Keliat and M. Ikhsan, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes pada Klasifikasi Jenis Buah Kurma berdasarkan Citra Hue Saturation Value,” Sistemasi: Jurnal Sistem Informasi, vol. 14, no. 1, pp. 2540–9719, 2025, doi: 10.18495/generic.v14i1.122.

T. M. P. Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (SVM) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH JOURNAL, vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.

N.A. Irdianto, & R.A. Putri, “Penerapan Algoritma Support Vector Machine Pada Review Aplikasi Tiktok. Progresif: Jurnal Ilmiah Komputer, vol. 20, no. 2, pp. 872-885, 2024

M.R. Pratama, Y.R. Ramadha, & M.A. Komara, “Analisis Sentimen BRImo dan BCA Mobile Menggunakan Support Vector Machine dan Lexicon Based. Jutisi: Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, vol. 12, no. 3, pp. 1439-1450, 2023.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.