Datafikasi Melalui Fashion Modeling Di Universitas X Malaysia

Jap Tji Beng(1*),Rahmiyana Nurkholiza(2),Sri Tiatri(3),Sam Toong Hai(4),Vienchenzia Oeyta D. Dinatha(5),Margareta Margareta(6),Tasya Mulia Salsabila(7),Fasia Meta Sefira(8),Tiara Zahro(9)
(1) Universitas Tarumanagara
(2) Universitas Tarumanagara
(3) Universitas Tarumanagara
(4) INTI International University Malaysia
(5) INTI International University Malaysia
(6) Universitas Tarumanagara
(7) Universitas Tarumanagara
(8) Universitas Tarumanagara
(9) Universitas Tarumanagara
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i2.2967

Abstract

Digital transformation has precipitated a substantial evolution to the fashion modelling sector. Term of digital transformation through big data, driven by the urgency to teach data literacy to students. This marked and dominated by the concept of datafication, which is the transformation of intangible elements into quantifiable data. This study examines students understanding of datafication level through fashion modeling. The study employs a quantitative method with a pre-test and post-test design consisting of 10 questions. The research variables are the intervention of datafication learning in fashion modelling and changes in students understanding levels. The study participants include 31 students from university X in Malaysia. The results of paired samples t-test analysis showed a significant increase, with an average score difference of 2.45 (p= 0.017). Additionally, the decrease in standard deviation and standard error of the mean values indicated stability in understanding after the intervention. The findings of this study contribute to data-based learning strategies and strengthen the connection between conceptual understanding and practical application.

Keyword: Datafication; Digital Transformation; Fashion; Modeling; Big Data 

 

Abstrak

 

Transformasi digital telah membawa perubahan signifikan di sektor fashion modeling. Perkembangan transformasi digital melalui big data didukung oleh urgensi memperkenalkan pembelajaran data kepada mahasiswa menjadi penting. Perkembangan ini ditandai dan di dominasi oleh konsep datafikasi, yang merupakan transformasi elemen tidak berwujud menjadi sebuah data terkuantifikasi. Penelitian ini bertujuan untuk menganalisis dan mengevaluasi tingkat pemahaman datafikasi melalui fashion modeling. Penelitian ini menggunakan metode kuantitatif dengan desain pre-test dan post-test sebanyak 10 butir pertanyaan. Variabel penelitian ini adalah intervensi pembelajaran datafikasi fashion modeling dan perubahan tingkat pemahaman mahasiswa. Partisipan penelitian melibatkan 31 mahasiswa di universitas X Malaysia. Hasil analisis paired samples t-test menunjukkan peningkatan signifikan, dengan selisih skor rata-rata sebesar 2.45 (p= 0.017). Selain itu penurunan nilai standar deviasi dan standard error mean menunjukkan indikasi stabilitas pemahaman setelah intervensi. Hasil penelitian ini memberikan kontribusi terhadap strategi pembelajaran berbasis data serta memperkuat keterkaitan antara pemahaman konseptual dan pemaparan praktik.

 

Keywords


Datafikasi; Transformasi Digital; Fashion; Modeling; Big Data

References


J. T. Beng, S. Tiatri, M. Zheng, R. Nurkholiza, V. Dinatha, and T. M. Salsabila, “Development of a Training Model on the Use of Laser Engraving Technology for Vocational High School Female Students in Semi-Urban Areas: Gender Equality in Education,” TEM Journal, vol. 14, no. 2, pp. 1860–1866, May 2025, doi: 10.18421/TEM142-82.

M. Misut and P. Jurik, “Datafication As A Necessary Step In The Processing Of Big Data In Decision-Making Tasks Of Business,” in Proceedings of CBU in Natural Sciences and ICT, CBU Research Institute, Oct. 2021, pp. 75–80. doi: 10.12955/pns.v2.156.

K. Wang, B. Li, T. Tian, N. Zakuan, and P. Rani, “Evaluate the drivers for digital transformation in higher education institutions in the era of industry 4.0 based on decision-making method,” Journal of Innovation and Knowledge, vol. 8, no. 3, p. 100364, Jul. 2023, doi: 10.1016/j.jik.2023.100364.

U. Awan, S. Shamim, Z. Khan, N. U. Zia, S. M. Shariq, and M. N. Khan, “Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance,” Technol Forecast Soc Change, vol. 168, p. 120766, Jul. 2021, doi: 10.1016/j.techfore.2021.120766.

M. I. Baig, L. Shuib, and E. Yadegaridehkordi, “Big data in education: a state of the art, limitations, and future research directions,” International Journal of Educational Technology in Higher Education, vol. 17, no. 1, p. 44, Dec. 2020, doi: 10.1186/s41239-020-00223-0.

V. Mayer-Schönberger and K. Cukier, BIG DATA A Revolution That Will Transform How We Live, Work, and Think. 2013. [Online]. Available: http://www.mann-ivanov-ferber.ru/books/paperbook/big_data/

A. Rocamora, “The Datafication and Quantification of Fashion: The Case of Fashion Influencers,” Fashion Theory - Journal of Dress Body and Culture, vol. 26, no. 7, pp. 1109–1133, 2022, doi: 10.1080/1362704X.2022.2048527.

T. Ratuannisa, I. Santosa, K. Kahdar, and A. Syarief, “Shifting of Batik Clothing Style as Response to Fashion Trends in Indonesia,” Mudra Jurnal Seni Budaya, vol. 35, no. 2, pp. 127–132, Jun. 2020, doi: 10.31091/mudra.v35i2.1044.

V. Pérez-Torres, “Social media: a digital social mirror for identity development during adolescence,” Current Psychology, vol. 43, no. 26, pp. 22170–22180, Jul. 2024, doi: 10.1007/s12144-024-05980-z.

A. Vänskä, S. Rauti, T. Heino, R. Carlsson, S. Mickelsson, and N. Särmäkari, “Fair Data is the New Black: Online Shopping, Data Leaks, and Broadening the Understanding of Sustainable Fashion,” Fashion Theory - Journal of Dress Body and Culture, vol. 28, no. 3, pp. 305–333, 2024, doi: 10.1080/1362704X.2024.2339251.

Pangrazio Luci and Sefton-Green Julian, “Learning to Live with Datafication,” 2022, Accessed: Jan. 21, 2025. [Online]. Available: https://api.taylorfrancis.com/content/ books/mono/download?identifierName=doi&identifierValue=10.4324/9781003136842&type=googlepdf

Y. Gao, M. Janssen, and C. Zhang, “Understanding the evolution of open government data research: towards open data sustainability and smartness,” International Review of Administrative Sciences, vol. 89, no. 1, pp. 59–75, Mar. 2023, doi: 10.1177/00208523211009955.

O. Marjanovic and D. Cecez-Kecmanovic, “Exploring the tension between transparency and datification effects of open government IS through the lens of Complex Adaptive Systems,” Journal of Strategic Information Systems, vol. 26, no. 3, pp. 210–232, Sep. 2017, doi: 10.1016/j.jsis.2017.07.001.

B. W. Wirtz, J. C. Weyerer, M. Becker, and W. M. Müller, “Open government data: A systematic literature review of empirical research,” Electronic Markets, vol. 32, no. 4, pp. 2381–2404, Dec. 2022, doi: 10.1007/s12525-022-00582-8.

R. Eynon, “The rise of Big Data: What does it mean for education, technology, and media research?,”, vol. 38, no. 3, pp. 237-240 2013. doi: 10.1080/17439884.2013.771783.

A. Stojanov and B. K. Daniel, “A decade of research into the application of big data and analytics in higher education: A systematic review of the literature,” Educ Inf Technol (Dordr), vol. 29, no. 5, pp. 5807–5831, Apr. 2024, doi: 10.1007/s10639-023-12033-8.

S. Flensburg and S. Lomborg, “Datafication research: Mapping the field for a future agenda,” New Media Soc, vol. 25, no. 6, pp. 1451–1469, Jun. 2023, doi: 10.1177/14614448211046616.

D. Walentek, “Datafication Process in the Concept of Smart Cities,” Energies (Basel), vol. 14, no. 16, p. 4861, Aug. 2021, doi: 10.3390/en14164861.

K. Birch, J. Komljenovic, and S. Sellar, “Architectures of assetization: Legacy infrastructures and the configuration of datafication in UK higher education,” New Media Soc, vol. 27, no. 4, pp. 1868–1887, Apr. 2025, doi: 10.1177/14614448251314400.

C. Hesselbein, P. Bory, and S. Canali, “Metaverse datafication: technologies, definitions, and futures,” Inf Commun Soc, vol. 28, no. 5, pp. 763–777, Apr. 2025, doi: 10.1080/1369118X.2024.2443082.

G. Wang, J. Zhao, M. Van Kleek, and N. Shadbolt, “‘Don’t make assumptions about me!’: Understanding Children’s Perception of Datafication Online,” Proc ACM Hum Comput Interact, vol. 6, no. CSCW2, pp. 1–24, Nov. 2022, doi: 10.1145/3555144.

S. Milan and D. Beraldo, “Data in movement: the social movement society in the age of datafication,” in Social Movement Studies, Routledge, Mar. 2024, pp. 265–284. doi: 10.1080/14742837.2024.2331550.

K. Cieslik and D. Margócsy, “Datafication, Power and Control in Development: A Historical Perspective on the Perils and Longevity of Data,” Progress in Development Studies, vol. 22, no. 4, pp. 352–373, Oct. 2022, doi: 10.1177/14649934221076580.

D. Hesmondhalgh, “Subjectivity, culture and the datafication of music,” Convergence: The International Journal of Research into New Media Technologies, pp. 1-15, Apr. 2025, doi: 10.1177/13548565251336465.

C. Hesselbein, P. Bory, and S. Canali, “Six provocations for metaverse datafication: an emergent cultural, technological, and scholarly phenomenon,” Inf Commun Soc, vol. 28, no. 5, pp. 778–796, 2025, doi: 10.1080/1369118X.2024.2433548.

C. Knorr and C. Pentzold, “Making sense of ‘big data’: Ten years of discourse around datafication,” Big Data Soc, vol. 12, no. 2, pp. 1-15, Jun. 2025, doi: 10.1177/20539517251330181.

S. Milan and D. Beraldo, “Data in movement: the social movement society in the age of datafication,” Soc Mov Stud, vol. 23, no. 3, pp. 265–284, 2024, doi: 10.1080/14742837.2024.2331550.

C. Begkos, K. Antonopoulou, and M. Ronzani, “To datafication and beyond: Digital transformation and accounting technologies in the healthcare sector,” The British Accounting Review, vol. 56, no. 4, p. 101259, Jul. 2024, doi: 10.1016/j.bar.2023.101259.

G. Bolin, “Mediatisation, Digitisation and Datafication,” Central European Journal of Communication, vol. 16, no. 1(33), pp. 7–18, Oct. 2023, doi: 10.51480/1899-5101.16.1(33).1.

P. Leitner, M. Khalil, and M. Ebner, Learning Analytics in Higher Education—A Literature Review, vol. 56, no. 3. Pp. 1-23, John Wiley and Sons Inc, 2017. doi: 10.1007/978-3-319-52977-6_1.

L. Reutter, “Constraining context: Situating datafication in public administration,” New Media Soc, vol. 24, no. 4, pp. 903–921, Apr. 2022, doi: 10.1177/14614448221079029.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.