Implementasi Algoritma Naïve Bayes Untuk Klasifikasi Sentimen Ulasan Pengguna KAI Access

Risma Faris Triana(1*),Ade Irma Purnama Sari(2),Agus Bahtiar(3),Edi Wahyudin(4)
(1) STMIK IKMI Cirebon
(2) STMIK IKMI Cirebon
(3) STMIK IKMI Cirebon
(4) STMIK IKMI Cirebon
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i1.2437

Abstract

The internet have an important role in facilitating access to various applications, including KAI Access, which is designed to improve public transportation services. This application allows users to book tickets, check schedules, and get travel information efficiently. This study seeks to enhance the sentiment analysis model for user reviews by utilizing the Naïve Bayes algorithm. User review data taken from Google Play was preprocessed using TF-IDF technique to represent text as numerical vectors. Of the 1000 reviews analyzed, 965 reviews were processed and 35 reviews were deleted. The results showed negative sentiment (44.2%), followed by neutral (31.1%) and positive sentiment (24.7%). The Naïve Bayes algorithm produced an accuracy of 96.89% on the test data and 94.55% on the training data. These findings show that the Naïve Bayes algorithm is effective in classifying the sentiment of user reviews, providing important insights for improving the quality of app services.

Keywords: Sentiment analysis; Naïve Bayes Algorithm; KAI Access; User reviews; TF-IDF

 

Abstrak

Internet berperan penting dalam memfasilitasi akses terhadap berbagai aplikasi, termasuk KAI Access, yang dirancang untuk meningkatkan layanan transportasi publik. Aplikasi ini memungkinkan pengguna memesan tiket, mengecek jadwal, dan mendapatkan informasi perjalanan secara efisien. Penelitian ini bertujuan meningkatkan model klasifikasi sentimen ulasan pengguna memakai algoritma Naïve Bayes. Data ulasan pengguna yang didapat dari Google Play diolah memakai praproses dengan teknik TF-IDF untuk merepresentasikan teks sebagai vektor numerik. Dari 1000 ulasan yang dianalisis, sebanyak 965 ulasan diproses dan 35 ulasan dihapus. Hasil penelitian menunjukkan sentimen negatif (44,2%), diikuti sentimen netral (31,1%) dan positif (24,7%). Algoritma Naïve Bayes menghasilkan akurasi 96,89% pada data uji dan 94,55% pada data latih. Temuan ini menegaskan jika algoritma Naïve Bayes sesuai ketika pengklasifikasian sentimen ulasan pengguna, memberi wawasan penting untuk memperbaiki  performa layanan aplikasi.

 

Keywords


Analisis sentimen; algoritma Naïve Bayes; KAI Access; ulasan pengguna; TF-IDF

References


P. R. KAI, “Upgrade Aplikasi, KAI Lakukan Grand Launching Access,” Kai.Id. Accessed: Nov. 28, 2024. [Online]. Available: https://www.kai.id/information/full_news/5688

Y. Kurniawati, “How Does Sentiment Analysis Work?,” BINUS University. Accessed: Dec. 03, 2024. [Online]. Available: https://sis.binus.ac.id/2023/11/24/how-does-sentiment-analysis-work/

T. E. Unhan, R. I. M. Elalui, and M. E. S. Osial, “Analisis Sentimen Persepsi Masyarakat Terhadap Unhan Ri Melalui Media Sosial,” ANTIVIRUS: Jurnal Ilmiah Teknik InformatikaVol. 18 No. 2, pp. 212 – 221, November 2024,. DOI:10.35457/antivirus.v18i2.3902

A. Rhamadanti, A. Rifa’i, F. Dikananda, and K. Anam, “Analisis Sentimen Pada Ulasan Access By Kereta Api Indonesia Dengan K-Nearest Neighbor,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 1, pp. 775–783, 2024, doi: 10.23960/jitet.v12i1.3961.

T. Tukino and F. Fifi, “Penerapan Support Vector Machine Untuk Analisis Sentimen Pada Layanan Ojek Online,” J. Desain Dan Anal. Teknol., vol. 3, no. 2, pp. 104–113, 2024, doi: 10.58520/jddat.v3i2.59.

D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.

M. K. Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.

Rahel Lina Simanjuntak, Theresia Romauli Siagian, Vina Anggriani, and Arnita Arnita, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Shopee Dengan Menggunakan Algoritma Naïve Bayes,” J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 3, no. 3, pp. 23–39, 2023, doi: 10.55606/teknik.v3i3.2411.

A. Fahlevi, “Proses Data Mining KDD,” BINUS University. Accessed: Dec. 09, 2024. [Online]. Available: https://sis.binus.ac.id/2021/09/30/proses-data-mining-kdd/

M. Riadi, “Pengertian, Fungsi, Proses dan Tahapan Data Mining,” kajian pustaka. Accessed: Dec. 09, 2024. [Online]. Available: https://www.kajianpustaka.com/2017/09/data-mining.html

A. A. Sentimen, “Analisis Sentimen Data Ulasan Pengguna Aplikasi ‘ PeduliLindungi ’ pada Google Play Store Menggunakan Metode Naïve Bayes Classifier Model Multinomial,” J. Sains dan Seni ITS, vol. 11, no. 6, pp. 464–471, 2022, doi: 10.12962/j23373520. v11i6.94064.

W. Wahyuni, “Analisis Sentimen terhadap Opini Feminisme Menggunakan Metode Naive Bayes,” J. Inform. Ekon. Bisnis, vol. 4, pp. 148–153, 2022, doi: 10.37034/infeb.v4i4.162.

I. Oktavia and A. R. Isnain, “Analisis Sentimen Opini Terhadap Tools Artificial Intelligence (AI) Berdasarkan Twitter Menggunakan Algoritma Naïve Bayes,” J. Media Inform. Budidarma , vol. 8, no. 2, pp. 777–787, 2024, doi: 10.30865/mib.v8i2.7524.

Fajar Muharram and Kana Saputra S, “Analisis Sentimen Pengguna Twitter Terhadap Kinerja Walikota Medan Menggunakan Metode Naive Bayes Classifier,” J. Sist. Inf. dan Ilmu Komput., vol. 1, no. 2, pp. 01–12, 2023, doi: 10.59581/jusiik-widyakarya.v1i2.17.

A. Putra Pratama, A. Irma Purnamasari, and I. Ali, “Analisis Sentimen Tanggapan Masyarakat Di Media Sosial Twitter Mengenai Penutupan Fitur Tiktok Shop Menggunakan Algoritma Klasifikasi Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 630–637, 2024, doi: 10.36040/jati.v8i1.8367.

E. Mailoa, “Perbandingan Beberapa Algoritma Machine Learning Dalam Analisis Sentimen Terkait Pemilihan Presiden RI 2024,” JUTISI, vol. 13, no. 2, pp. 1096–1105, 2024, doi: 10.35889/jutisi.v13i2.1980..

F. P. Nursyamsyi and F. N. Hasan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Sentimen Terhadap Aplikasi Identitas Kependudukan Digital Menggunakan Algoritma Naïve Bayes dan SVM,” Media Online, vol. 4, no. 3, pp. 1788–1798, 2023, doi: 10.30865/klik.v4i3.1517.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.