Klasifikasi Penentuan Pengajuan Kartu Kredit Nasabah Pada Bank Mandiri Dengan Metode Naive Bayes

Miftah Fadhli As'ad(1),Lut Faizal(2*),A. Fajar Maulana Natsir(3),Asrul Paelori Ahmad(4)
(1) Universitas Muhammadiyah Sinjai
(2) Universitas Muhammadiyah Sinjai
(3) Universitas Muhammadiyah Sinjai
(4) Universitas Muhammadiyah Sinjai
(*) Corresponding Author
DOI : 10.35889/progresif.v21i1.2468

Abstract

The selection process for credit card applications is a challenge for banks because it still relies heavily on manual evaluation which is prone to subjectivity and inefficiency. This research aims to develop a classification system for credit card applications using the Naive Bayes method to increase accuracy and efficiency in the customer selection process. This method classifies customers based on main parameters such as income, credit history, number of dependents, employment status, and home ownership status. The developed model was tested using a dataset consisting of 166 training data and 20 test data, resulting in 85% accuracy, 86.67% recall and 93% precision. These results indicate that the Naive Bayes method can be an effective solution in helping banks automate the credit card application evaluation process with a high level of accuracy.

Keywords: Credit Card; Naive Bayes; Classification

 

Abstrak

Proses seleksi pengajuan kartu kredit merupakan tantangan bagi perbankan karena masih banyak bergantung pada evaluasi manual yang rentan terhadap subjektivitas dan ketidakefisienan. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi pengajuan kartu kredit dengan metode Naive Bayes guna meningkatkan akurasi dan efisiensi dalam proses seleksi nasabah. Metode ini mengklasifikasikan nasabah berdasarkan parameter utama seperti pendapatan, riwayat kredit, jumlah tanggungan, status pekerjaan, dan status kepemilikan rumah. Model yang dikembangkan diuji menggunakan dataset yang terdiri dari 166 data latih dan 20 data uji, menghasilkan akurasi 85%, recall 86,67%, dan precision 93%. Hasil ini menunjukkan bahwa metode Naive Bayes dapat menjadi solusi yang efektif dalam membantu bank mengotomatisasi proses evaluasi pengajuan kartu kredit dengan tingkat akurasi yang tinggi.

Kata kunci: Kartu Kredit; Naive bayes; Klasifikasi

References


F. Margaretha and S. May Sari, “Faktor Penentu Tingkat Literasi Keuangan Para Pengguna Kartu Kredit di Indonesia,” J. Akunt. dan Investasi, vol. 16, no. 2, pp. 132–144, 2015, doi: 10.18196/jai.2015.0038.132-144.

K. P. Murphy, Machine Learning : A Probabilistic Perspective. London, England: The MIT Press, 2012.

A. E. Khandani, A. J. Kim, and A. W. Lo, “Consumer Credit Risk Models Via Machine-Learning Algorithms,” SSRN Electron. J., vol. 34, no. 11, pp. 2767–2787, 2012.

H. Qian, S. Zhang, B. Wang, L. Peng, S. Gao, and Y. Song, “A comparative study on machine learning models combining with outlier detection and balanced sampling methods for credit scoring,” arxiv.org/abs/2112.13196, 2021.

I. C. Yeh and C. hui Lien, “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients,” Expert Syst. Appl., vol. 36, no. 2 PART 1, pp. 2473–2480, 2009, doi: 10.1016/j.eswa.2007.12.020.

N. Hafid and L. Khikmah, “Perbandingan Metode Algoritma C4 . 5 , Naïve Bayes , dan Logistic Regression untuk Penentuan Kelayakan Penerima Kredit Comparison of C4 . 5 , Naïve Bayes , and Logistic Regression Algorithm Methods for Determining Credit Recipient Eligibility,” vol. 14, no. 2, pp. 85–93, 2024.

A. Indriani, “Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Yogyakarta, 2014, pp. 21–2014.

Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models in prediction of shear strength of soil,” Math. Probl. Eng., vol. 2021, no. 6, 2021, doi: 10.1155/2021/4832864.

S. García, J. Luengo, and F. Herrera, Data Processing in Data Mining, vol. 72. Spain: Springer, 2015. doi: 10.1007/978-3-319-10247-4_8.

R. R. Pratama, “Analisis Model Machine Learning Terhadap Pengenalan Aktifitas Manusia,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 302–311, 2020, doi: 10.30812/matrik.v19i2.688.

S. B. Kim, H. C. Rim, D. S. Yook, and H. S. Lim, “Effective methods for improving naive Bayes text classifiers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2417, pp. 414–423, 2002, doi: 10.1007/3-540-45683-x_45.

G. Ertek, D. Tapucu, and I. Arin, “Text Mining with RapidMiner,” in RapidMiner: Data Mining Use Cases and Business Analytics Applications, Chapman and Hall/CRC.: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, 2013, pp. 1–47.

L. Y. Bai et al., “Prediction of Effective Drug Combinations by an Improved Naïve Bayesian Algorithm,” Int. J. Mol. Sci., vol. 19, no. 2, pp. 1–14, 2018.

J. C. Nugraha and F. Sulianta, “Meningkatkan Pengambilan Keputusan Industri Keuangan melalui Analisis Data Pinjaman Bank Menggunakan K-Means Clustering,” Res. Gate, 2024.

M. P. Pangaribuan and V. A. Purba, “Pemodelan Probability Of Default Portofolio Pembiayaan Bersama Fintech Lending dan Multi Finance :Studi Kasus Bank ABC,” Oikos J. Kaji. Pendidik. Ekon. dan Ilmu Ekon., vol. VII, no. 2, pp. 562–576, 2023.

F. P. Budiana and H. Shelviani, “Kombinasi Algoritma Decision Tree Dan Naive Bayes Untuk Meningkatkan Akurasi Dan Kecepatan,” in Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK), 2025, pp. 419–425.


How To Cite This :

Refbacks

  • There are currently no refbacks.