Prediksi Pergerakan Harga Saham Bank Mandiri Menggunakan Metode Support Vector Regression dan Algoritma Grid Search

Francesco Totti Samuelly(1),Yessica Nataliani(2*)
(1) Universitas Kristen Satya Wacana
(2) Universitas Kristen Satya Wacana
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i3.3206

Abstract

The volatile nature of stock price movements poses a major challenge for investors in making accurate investment decisions. This study aims to predict the stock price movement of PT. Bank Mandiri (Persero) Tbk [BMRI] using Support Vector Regression (SVR) optimized through the Grid Search algorithm. The dataset consists of daily stock prices from August 2020 to August 2025, including open, high, low, close, adjusted close, and trading volume. The research process involves data collection, preprocessing (cleaning, feature selection, normalization), splitting into training and testing sets, parameter optimization using Grid Search with Leave-One-Out Cross Validation (LOOCV), model training, and evaluation with R², MSE, and RMSE. The results show that the SVR model with a linear kernel, C = 1 and epsilon = 0.01, achieved the best performance, with high accuracy (R² = 0.9991 on training data and R² = 0.9976 on testing data). These findings confirm the effectiveness of Grid Search–based SVR in predicting stock prices and supporting investment decision-making.

Keywords: Stock Price Prediction; Support Vector Regression; Grid Search; Bank Mandiri

 

Abstrak

Pergerakan harga saham yang fluktuatif menjadi tantangan utama bagi investor dalam menentukan strategi investasi yang tepat. Penelitian ini bertujuan memprediksi pergerakan harga saham PT. Bank Mandiri (Persero) Tbk [BMRI] dengan metode Support Vector Regression (SVR) yang dioptimalkan menggunakan algoritma Grid Search. Data yang digunakan berupa harga saham harian periode Agustus 2020–Agustus 2025, mencakup variabel open, high, low, close, adjusted close, dan volume. Tahapan penelitian meliputi pengumpulan data, pra-pemrosesan (pembersihan, seleksi fitur, normalisasi), pembagian data latih dan uji, optimasi parameter dengan Grid Search berbasis Leave-One-Out Cross Validation (LOOCV), pelatihan model, serta evaluasi dengan , MSE, dan RMSE. Hasil penelitian menunjukkan SVR dengan kernel linear, parameter C = 1 dan epsilon = 0,01 memberikan performa terbaik dengan akurasi tinggi ( = 0,9991 pada data latih dan = 0,9976 pada data uji). Temuan ini menegaskan efektivitas SVR berbasis Grid Search dalam memprediksi harga saham dan mendukung pengambilan keputusan investasi.

 

Keywords


Prediksi Harga Saham; Support Vector Regression; Grid Search; Bank Mandiri

References


S. E. D. Paningrum, Buku referensi investasi pasar modal. Lembaga Chakra Brahmana Lentera, 2022.

N. A. Syafiqah, N. Khairunissa, N. D. Saragih, M. G. Alfay, V. Aria, and Arsyadona, “Manajemen Risiko Dalam Pengambilan Keputusan Investasi : Perspektif Pasar Modal Indonesia,” in Proceedings of the International Conference on Islamic Economics (Int. Conf. Islam. Econ.), vol. 1, no. 1, pp. 03–04, 2023.

A. Anggraini, S. Sudarno, and M. Raihan, “Pemodelan Autoregressive Conditional Heteroscedasticity Dalam Analisis Makroekonomi Terhadap Volatilitas Saham Pt Destinasi Tirta Nusantara Tbk,” J. Cahaya Mandalika ISSN 2721-4796, vol. 3, no. 2, pp. 1667–1681, 2023, doi: 10.36312/jcm.v3i2.2210.

A. Ariwibowo, “Analisis Value at Risk Menggunakan Pendekatan Threshold Generalized Autoregressive Conditional Heteroskedasticity Dan Generalized Pareto Distribution,” J. Ilmu Dasar, vol. 23, no. 1, pp. 1–8, 2020.

A. A. Rismayadi, R. W. Febrianto, A. R. Raharja, and I. Hariyanti, “Perbandingan Kinerja Metode Machine Learning Support Vector Machine (SVM), Random Forest, dan K-Nearest Neighbors (KNN) dalam Prediksi Harga Saham Apple,” Media Inform., vol. 23, no. 3, pp. 152–160, 2024, doi: 10.37595/mediainfo.v23i3.299.

A. W. Ishlah, S. Sudarno, and P. Kartikasari, “Implementasi Gridsearchcv Pada Support Vector Regression (Svr) Untuk Peramalan Harga Saham,” J. Gaussian, vol. 12, no. 2, pp. 276–286, 2023, doi: 10.14710/j.gauss.12.2.276-286.

R. F. T. Wulandari and D. Anubhakti, “Implementasi Algoritma Support Vector Machine (Svm) Dalam Memprediksi Harga Saham PT. Garuda Indonesia Tbk,” IDEALIS Indones. J. Inf. Syst., vol. 4, no. 2, pp. 250–256, 2021, doi: 10.36080/idealis.v4i2.2847.

A. A. Mahgfirah and P. I. Rahayu, “Analisis Support Vector Regression untuk Meramalkan Saham Perusahaan Dss di Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 7, no. 1, pp. 44–54, 2025, doi: 10.35580/variansiunm356.

M. Muzzakin, B. A. Pramono, and Susanto, “Model Svm untuk Prediksi Harga dan Analisis Risiko pada Pasar Bitcoin,” vol. 30 No 2, pp. 242–249, 2025.

S. Ghosh, A. Dasgupta, and A. Swetapadma, “A study on support vector machine based linear and non-linear pattern classification,” in ICISS 2019, 2021, pp. 167–186.

D. H. Yudhawan, “Implementasi Support Vector Regression Untuk Peramalan Harga Saham Perusahaan Pertambangan di Indonesia,” Tesis, Universitas Islam Indonesia, 2020.

Parida, Melisa, M. Safitri, and N. Zakiah, “Implementasi Penerapan Fungsi Nonliner Dalam Matematika Ekonomi Pada Kehidupan Sehari-Hari,” Al-Aqlu J. Mat. Tek. dan Sains, vol. 2, no. 1, pp. 9–16, 2024, doi: 10.59896/aqlu.v2i1.39.

S. N. Khan, S. U. Khan, H. Aznaoui, C. B. Şahin, and Ö. B. Dinler, “Generalization of linear and non-linear support vector machine in multiple fields: a review,” Comput. Sci. Inf. Technol., vol. 4, no. 3, pp. 226–239, 2023, doi: 10.11591/csit.v4i3.pp226-239.

A. Hermawan, I. W. Mangku, N. K. K. Ardana, and H. Sumarno, “Analisis Support Vector Regression Dengan Algoritma Grid Search Untuk Memprediksi Harga Saham,” MILANG J. Math. Its Appl., vol. 18, no. 1, pp. 41–60, 2022, doi: 10.29244/milang.18.1.41-60.

G. Ashari Rakhmat and W. Mutohar, “MIND (Multimedia Artificial Intelligent Networking Database Prakiraan Hujan menggunakan Metode Random Forest dan Cross Validation,” J. MIND J. | ISSN, vol. 8, no. 2, pp. 173–187, 2023, [Online]. Available: https://doi.org/10.26760/mindjournal.v8i2.173-187


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.