Assessing Master Data Management Maturity in General Insurance Sector
Abstract
As data becomes a strategic asset, organizations must adopt strong Master Data Management (MDM) practices to support governance, compliance, and decision-making. This study assesses the MDM maturity of a general insurance company in Indonesia using a qualitative case study approach. Data were gathered through interviews, document analysis, and field observations. The assessment used the Master Data Management Maturity Model (MD3M), which evaluates key domains of MDM practices. Findings show the company is still in the early stages of MDM maturity, characterized by fragmented processes, unclear roles, and limited data standardization. This study offers empirical insights into MDM maturity within the insurance sector, which remains underrepresented in current research. It also provides practical recommendations for improvement, such as defining data ownership, formalizing governance structures, and integrating customer data systems to enhance overall data management capabilities.
Keywords: Master Data Management; MD3M; Maturity Assessment; General Insurance
Abstrak
Seiring dengan meningkatnya peran data sebagai aset strategis, organisasi perlu menerapkan praktik Master Data Management (MDM) yang kuat untuk mendukung tata kelola, kepatuhan, dan pengambilan keputusan. Studi ini menilai tingkat kematangan MDM pada sebuah perusahaan asuransi umum di Indonesia dengan menggunakan pendekatan studi kasus kualitatif. Data dikumpulkan melalui wawancara, analisis dokumen, dan observasi lapangan. Penilaian dilakukan menggunakan kerangka Master Data Management Maturity Model (MD3M) yang mengevaluasi sejumlah domain utama dalam praktik MDM. Temuan menunjukkan bahwa tingkat kematangan MDM perusahaan masih berada pada tahap awal, ditandai dengan proses yang terfragmentasi, peran yang belum jelas, dan standar data yang belum konsisten. Studi ini memberikan wawasan empiris mengenai kematangan MDM di sektor asuransi, yang masih jarang diteliti. Selain itu, studi ini menawarkan rekomendasi praktis seperti penetapan kepemilikan data, pembentukan struktur tata kelola, dan integrasi sistem data nasabah.
Keywords
References
T. Xu, H. Shi, Y. Shi, and J. You, “From data to data asset: conceptual evolution and strategic imperatives in the digital economy era,” APJIE, vol. 18, no. 1, pp. 2–20, Jan. 2024, doi: 10.1108/APJIE-10-2023-0195.
R. Y. Wang and D. M. Strong, “Beyond Accuracy: What Data Quality Means to Data Consumers,” Journal of Management Information Systems, vol. 12, no. 4, pp. 5–33, 1996.
DAMA International, DAMA-DMBOK: Data Management Body of Knowledge (2nd Edition). Denville, NJ, USA: Technics Publications, LLC, 2017.
A. Dreibelbis, E. Hechler, I. Milman, M. Oberhofer, P. van Run, and D. Wolfson, Enterprise Master Data Management: An SOA Approach to Managing Core Information, 1st ed. IBM Press, 2008.
F. Haneem, R. Ali, N. Kama, and S. Basri, “Resolving data duplication, inaccuracy and inconsistency issues using Master Data Management,” in 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), Langkawi, Malaysia: IEEE, Jul. 2017, pp. 1–6. doi: 10.1109/ICRIIS.2017.8002453.
T. Raharjo, M. H. Abdurrahman, and E. H. Yossy, “A Model of Critical Success Factors for Master Data Management Development Projects using Analytic Hierarchy Process (AHP): An Insight from Indonesia,” in 2023 5th International Conference on Management Science and Industrial Engineering, Chiang Mai Thailand: ACM, Apr. 2023, pp. 17–22. doi: 10.1145/3603955.3603959.
D. Loshin, Master Data Management. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.
B. M. V. Bernardo, H. S. Mamede, J. M. P. Barroso, and V. M. P. D. Dos Santos, “Data governance & quality management—Innovation and breakthroughs across different fields,” Journal of Innovation & Knowledge, vol. 9, no. 4, p. 100598, Oct. 2024, doi: 10.1016/j.jik.2024.100598.
M. Spruit and K. Pietzka, “MD3M: The master data management maturity model,” Computers in Human Behavior, vol. 51, pp. 1068–1076, Oct. 2015, doi: 10.1016/j.chb.2014.09.030.
A. Aditya Rahman, P. Gusman Dharma, R. Mohamad Fatchur, A. Nala Freedrikson, B. Pranata Ari, and Y. Ruldeviyani, “Master Data Management Maturity Assessment: A Case Study of A Pasar Rebo Public Hospital,” in 2019 International Conference on Advanced Computer Science and information Systems (ICACSIS), 2019, pp. 497–504. doi: 10.1109/ICACSIS47736.2019.8979656.
F. G. Pratama, S. Astana, S. B. Yudhoatmojo, and A. Nizar Hidayanto, “Master Data Management Maturity Assessment: A Case Study of Organization in Ministry of Education and Culture,” in 2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia: IEEE, Nov. 2018, pp. 1–6. doi: 10.1109/IC3INA.2018.8629524.
C. Ko, A. D. Adywiratama, and A. N. Hidayanto, “Master Data Management Maturity Model (MD3M) Assessment: A Case Study in Secretariat of Presidential Advisory Council,” in 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia: IEEE, Aug. 2021, pp. 359–363. doi: 10.1109/ICoICT52021.2021.9527507.
N. Qodarsih, S. B. Yudhoatmojo, and A. N. Hidayanto, “Master Data Management Maturity Assessment: A Case Study in the Supreme Court of the Republic of Indonesia,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia: IEEE, Aug. 2018, pp. 1–7. doi: 10.1109/CITSM.2018.8674373.
R. Iqbal, P. Yuda, and W. Aditya, “Master Data Management Maturity Assessment: Case Study of XYZ Company,” In 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI), pp. 133-139, IEEE. 2019.
J. Recker, Scientific Research in Information Systems: A Beginner’s Guide. Springer Publishing Company, Incorporated, 2012.
M. Spruit, & K. Pietzka, "MD3M: The master data management maturity model. Computers in Human Behavior, vol. 51, pp. 1068-1076, 2015
D. V. Zúñiga, R. K. Cruz, C. R. Ibañez, F. Dominguez, and J. M. Moguerza, “Master Data Management Maturity Model for the Microfinance Sector in Peru,” in Proceedings of the 2nd International Conference on Information System and Data Mining, Lakeland FL USA: ACM, Apr. 2018, pp. 49–53. doi: 10.1145/3206098.3206127.
S. Hikmawati, P. I. Santosa, and I. Hidayah, “Improving Data Quality and Data Governance Using Master Data Management: A Review,” IJITEE, vol. 5, no. 3, pp. 90-102, Sep. 2021, doi: 10.22146/ijitee.66307.
A. B. Santoso, Y. Pamungkas, and Y. Ruldeviyani, “Master Data Management Implementation In Distributed Information System Case Study Directorate General Of Tax, Ministry Of Finance Of Republic Of Indonesia,” Journal of Information Systems, vol. 15, no. 1, pp. 18–27, Apr. 2019, doi: 10.21609/jsi.v15i1.779.
M. Huber, S. Zimmermann, C. Rentrop, and C. Felden, “Conceptualizing Shadow IT Integration Drawbacks from a Systemic Viewpoint,” Systems, vol. 6, no. 4, pp. 42-53, Dec. 2018, doi: 10.3390/systems6040042.
R. Miller, S. H. M. Chan, H. Whelan, and J. Gregório, “A Comparison of Data Quality Frameworks: A Review,” BDCC, vol. 9, no. 4, pp. 93-102, Apr. 2025, doi: 10.3390/bdcc9040093.
R. Lebaea, Y. Roshe, S. Ntontela, and B. A. Thango, “The Role of Data Governance in Ensuring System Success and Long-Term IT Performance: A Systematic Review,” Oct. 23, 2024, Business, Economics and Management. doi: 10.20944/ preprints202410.1841.v1.
How To Cite This :
Refbacks
- There are currently no refbacks.