Prediksi Safety Stock Penjualan Produk Pakaian Berbasis Model DR-ARIMA (Studi Kasus: Veruby Store)
Abstract
Effective inventory management has become a crucial aspect in the fashion retail industry, especially in responding to fluctuating demand. This study aimed to predict safety stock needs using the DR-ARIMA (3,0,6) model, an enhancement of ARIMA that considers demand response and error analysis. Predictions were validated with Root Mean Square Error and used to establish lower and upper sales projection limits for safety stock calculation. The model demonstrated good accuracy for product categories with stable sales patterns such as tops, while showing limitations in categories with more volatile demand like bottoms. These findings highlight the imporantance of integrating trend analysis and customer behavior data to develop more adaptive and responsive stock management strategies amid market dynamics.
Key Words: Safety Stock; ARIMA; Demand Response; Fashion Retail
Abstrak
Pengelolaan persediaan yang efektif menjadi aspek penting dalam industri riteal fashion, terutama dalam menghadapi permintaan yang fluktuatif, penelitian ini bertujuan memprediksi kebutuhan safety stock menggunakan model DR-ARIMA (3,0,6), yang merupakan pengembanagn dari ARIMA yang memperhitungkan respon permintaan dan analisis kesalahan. Hasil prediksi divalidasi dengan Root Mean Square Error dan digunakan untuk menentukan batas bawah dan atas proyeksi penjualan sebagai dasar penentuan safety stock. Model menunjukkan tingkat akurasi yang baik untuk kategori produk dengan pola penjualan stabil seperti atasan, namun memiliki keterbatasan dalam kategori dengan pola permintaan fluktuatif seperti bawahan. Temuan ini menegaskan pentingnya integrase analisis tren dan data perilaku pelanggan demi pengelolaan stok yang lebih adaptif dan responsif terhadap dinamika pasar.
Keywords
References
D. Chen, W. Liang, K. Zhou, and F. Liu, “Sales Forecasting for Fashion Products Considering Lost Sales,” Appl. Sci., vol. 12, no.14, pp.7081, 2022. doi: 10.3390/app12147081.
F. Lehrbass, “Analyzing Promotion Effectiveness in Fashion Retailing Using Quantile Regression,” Operations Strategy eJournal, vol. 44, no.1, pp.1-17, 2020. doi: 10.2139/ssrn.3576434.
R. Aditiya and S. Defit, “Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan,” J. Inform. Ekon. Bisnis, vol.2, no.3, pp.67-73, 2020. doi: 10.37034/infeb.v2i3.44.
B. C. Giri and C. H. Glock, “The bullwhip effect in a manufacturing/remanufacturing supply chain under a price-induced non-standard ARMA(1,1) demand process,” Eur. J. Oper. Res., vol. 301, no. 2, pp. 458–472, 2022, doi: https://doi.org/10.1016/j.ejor.2021.10.025.
G. Dong, L. Wei, J. Xie, and W. Zhang, “Financing and operational optimization: An example of electric vehicle’s major component – Power battery,” Comput. Ind. Eng., vol. 147, p. 106751, 2020, doi: 10.1016/j.cie.2020.106751.
J. S. Kim, S. K Y, and S. E. and Ahn, “A multiple replenishment contract with ARIMA demand processes,” J. Oper. Res. Soc., vol. 54, no. 11, pp. 1189–1197, Nov. 2003, doi: 10.1057/palgrave.jors.2601620.
S. Mohammadi, S. Avakh Darestani, B. Vahdani, and A. Alinezhad, “A robust neutrosophic fuzzy-based approach to integrate reliable facility location and routing decisions for disaster relief under fairness and aftershocks concerns,” Comput. Ind. Eng., vol. 148, p. 106734, 2020, doi: https://doi.org/10.1016/j.cie.2020.106734.
R. A. Prayoga and N. B. Mulyono, “Optimizing Inventory Management of MFD Studio To Reduce The High Lost Sales,” J. Integr. Manag. Stud., vol. 2, no. 1, pp. 49–60, Mar. 2024, doi: 10.58229/jims.v2i1.135.
M. Chouhan and D. K. Srivastava, “COVID-19 Outbreaks Challenges to Global Supply Chain Management and Demand Forecasting on SCM Using Autoregressive Models BT - Innovative Supply Chain Management via Digitalization and Artificial Intelligence,” K. Perumal, C. L. Chowdhary, and L. Chella, Eds., Singapore: Springer Singapore, 2022, pp. 99–117. doi: 10.1007/978-981-19-0240-6_7.
A. Borucka, “Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth,” Sustainability, vol. 15, no.9, p.7399, 2023. doi: 10.3390/su15097399.
S. P. Fauzani and D. Rahmi, “Penerapan metode arima dalam peramalan harga produksi karet di provinsi riau,” J. Teknol. dan Manaj. Ind. Terap., vol. 2, no. 4, pp. 269–277, 2023.
“Improving Inventory Control in the Electrical Sector Using Forecasting Models: A Comparative Study of ARIMA, Exponential Smoothing, Croston, and SBA,” J. Serambi Eng., vol. 10, no. 2, pp. 13303-13313, 2025. [Online]. Available: https://jse.serambimekkah.id/index.php/jse/article/view/877
A. P. Setiyawan, “Peramalan dan Analisis Volume Penjualan Avtur di Indonesia Menggunakan Metode Deret Waktu Untuk Mendukung Pengendalian Persediaan Produk,” Master's Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, Feb. 2024.
R. J. I. Jimmy Tjen, Sandi Tendean, “Prediksi Safety Stock Produk Filter Oli Sepeda Motor Berbasis Demand Response (DR) - ARMA,” Bit-Tech (Binary Digital-Technology), Pontianak, vol. 4, no. 1, 2025.
N. Verita and J. Tjen, “Sales trend analysis via regression tree algorithm ( case study : Veruby Store Pontianak ),” in Proc. Int. Conf. Digit. Bus. Innov. Technol. Manag., vol. 1, no. 1, pp. 762–766, 2024.
How To Cite This :
Refbacks
- There are currently no refbacks.