Prediksi Sentimen dan Pemodelan Topik dari Ulasan Aplikasi Identitas Kependudukan Digital

Primandika Hakiki(1*),Dhian Satria(2),Amalia Anjani Arifiyanti(3)
(1) UPN "Veteran" Jawa Timur
(2) UPN "Veteran" Jawa Timur
(3) UPN "Veteran" Jawa Timur
(*) Corresponding Author
DOI : 10.35889/jutisi.v14i1.2777

Abstract

In this digital era, the Indonesian government is digitizing services, for example, the Digital Population Identity (IKD) in 2023 as a continuation of the Identity card (KTP). The IKD application has received mixed reviews on the Google PlayStore and Apple AppStore. From these various reviews, sentiment analysis can be carried out to determine the level of user satisfaction, as well as topic modeling to determine topics that are frequently discussed by users. This study aims to predict sentiment using the Naive Bayes and PNN methods, and topic modeling using the LDA method. The results of sentiment prediction show that the fourth scenario has the highest accuracy with 97.12%, and positive and negative f1-scores of 97% each. The results of topic modeling show the best coherence for positive reviews on topic 2 (0.4076) and for negative reviews on topic 10 (0.5564). Interpretation of the results shows that positive reviews include identity verification, application development suggestions, ease of use, KTP digitization, and user experience, while negative reviews are related to technical constraints, access and installation, network constraints, features and data security, and application registration.

Keywords: Digital population identity; Sentiment predict; Topic modelling; Naïve Bayes; Probabilistic Neural Network

 

Abstrak

Di era digital ini, pemerintah Indonesia melakukan digitalisasi layanan, contohnya yaitu Identitas Kependudukan Digital (IKD) pada tahun 2023 sebagai kelanjutan dari Kartu Tanda Penduduk (KTP). Aplikasi IKD mendapat ulasan beragam di Google PlayStore dan Apple AppStore. Dari beragam ulasan tersebut, maka dapat dilakukan analisis sentimen untuk mengetahui tingkat kepuasan pengguna, serta pemodelan topik untuk mengetahui topik yang sering dibahas oleh pengguna. Penelitian ini bertujuan untuk memprediksi sentimen menggunakan metode Naive Bayes dan PNN, serta pemodelan topik menggunakan metode LDA. Hasil prediksi sentimen menunjukkan skenario keempat memiliki akurasi tertinggi dengan 97,12%, serta f1-score positif dan negatif masing-masing 97%. Hasil pemodelan topik menunjukkan koherensi terbaik untuk ulasan positif pada topik 2 (0,4076) dan untuk ulasan negatif pada topik 10 (0,5564). Interpretasi hasil menunjukkan bahwa ulasan positif mencakup verifikasi identitas, saran pengembangan aplikasi, kemudahan penggunaan, digitalisasi KTP, dan pengalaman penggunaan, sedangkan ulasan negatif terkait kendala teknis, akses dan instalasi, kendala jaringan, fitur dan keamanan data, dan pendaftaran aplikasi.

 

Keywords


Identitas Kependudukan Digital; Prediksi sentimen; Pemodelan topik; Naïve Bayes; Probabilistic Neural Network

References


R. Dimas Sulistiyo and M. R. Shihab, “Transformasi Digital dalam Pelayanan Surat Izin Mengemudi (SIM): Studi Kasus Korlantas Polri,” Technomedia J., vol. 8, no. 2SP, pp. 189–204, 2023, doi: 10.33050/tmj.v8i2sp.2064.

A. Kaur and N. Gumber, “Sentimental Analysis on Application Reviews on Educational Apps,” Acad. edu, Accessed Jun, no. 11, pp. 16–19, 2014, [Online]. Available: https://www.academia.edu/download/35954453/IJETR022706.pdf

R. F. Triana, A. I. P. Sari, A. Bahtiar, and E. Wahyudin, “Implementasi Algoritma Naïve Bayes Untuk Klasifikasi Sentimen Ulasan Pengguna KAI Access,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 14, no. 1, pp. 12–21, 2025, doi: 10.35957/mdp-sc.v2i1.4326.

M. Joshi and H. Vala, “Opinion Mining For Sentiment Data Classification,” Int. J. Res. Inf. Technol., vol. 3, no. 1, pp. 8–14, 2014.

I. Najiyah and I. Hariyanti, “Sentimen Analisis Covid-19 Dengan Metode Probabilistic Neural Network Dan Tf-Idf,” J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 100–111, 2021, doi: 10.51977/jti.v3i1.488.

A. Alamsyah, W. Rizkika, D. D. A. Nugroho, F. Renaldi, and S. Saadah, “Dynamic large scale data on Twitter using sentiment analysis and topic modeling case study: Uber,” 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, vol. 0, no. c, pp. 254–258, 2018, doi: 10.1109/ICoICT.2018.8528776.

A. Komarudin and A. M. Hilda, “Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital Pada Play Store Menggunakan Metode Naïve Bayes,” Comput. Sci., vol. 4, no. 1, pp. 28–36, 2024, doi: 10.31294/coscience.v4i1.2955.

N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 123–131, 2021, doi: 10.29207/resti.v5i1.2587.

F. F. Roji, N. G. Ginasta, Y. Cahyan, D. Rahayu, and D. Ramdani, “Review Analysis of SatuSehat Application Using Support Vector Machine and Latent Dirichlet Allocation Modeling,” J. RISTEC Res. Inf. Syst. Technol., vol. 4, no. 1, pp. 76–88, 2023.

R. Tuntun, K. Kusrini, and K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2111, 2022, doi: 10.30865/mib.v6i4.4681.

R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.

A. Sasmoyo, R. Saptono, and Wiranto, “Penggunaan Jumlah Frekuensi Kata Terbanyak Sebagai Feature Set Pada Naive Bayes Classifier Untuk Mengklasifikasikan Dokumen Berbahasa Indonesia Dan Inggris,” Snik, no. October, pp. 293–296, 2015.

R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” J. Tek. Elektro Univ. Negeri Semarang, vol. 9, no. 1, pp. 18–23, 2017, [Online]. Available: https://journal.unnes.ac.id/nju/index.php/jte/article/download/10955/6659

M. Lan, “A New Term Weighting Method for Text Categorization By,” 2006.

Bustami, “Penerapan Algoritma Naive Bayes,” J. Inform., vol. 8, no. 1, pp. 884–898, 2014.

S. Alam and N. Yao, “Probabilistic neural network and word embedding for sentiment analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 7, pp. 48–53, 2018, doi: 10.14569/IJACSA.2018.090708.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369

I.H. Kusuma, & N. Cahyono. “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor”. Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 302-307, 2023.

Y. Akbar, & T. Sugiharto. “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4. 5 dan Naïve Bayes”. Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 115-122, 2023.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.