Model Perencanaan Bidang Minat Bagi Siswa SMA Berbasis Algoritma Subtractive Clustering

Fitriyadi Fitriyadi(1*),Bahar Bahar(2)
(1) STMIK Banjarbaru
(2) 
(*) Corresponding Author
DOI : 10.35889/jutisi.v4i2.92

Abstract

Based on the results of several studies on Specialization Department that has been done on High School / Vocational, many students do not have adequate ability in the area of interest that has been chosen, giving rise to drop out. This is caused because one can choose areas of interest. Models such as the       K-Means Clustering and FCM and classification models have been widely tested in the process of specialization. However, the nature of the hard classification algorithms are forcing each data to be members of a target group (cluster) of certain pre-defined at the beginning of the process, so that the accuracy of the cluster / classification was not optimal. This paper describes the use of subtractive clustering algorithm to form a number of clusters (groups) are naturally in the case of Interests Determination Division at High School / Vocational. The result of the determination of the areas of interest using subtractive Clustering Algorithm on a High School, showed that the number of clusters (groups) formed areas of interest exceeds the number of areas of interest that have been assigned by the school management, the accuracy rate of cluster formation by 89%.

Keywords:  Specialization in High School, Hard Classification Algorithm, Subtractive Clustering Algorithms

References


Departemen Pendidikan Nasional, 2004, Panduan Penilaian Penjurusan Kenaikan Kelas dan Pindah Sekolah, Direktorat Pendidikan Menengah Umum, Jakarta.

Sudaryanto, E., 2007, Pengaruh Minat Belajar dan Penjurusan Terhadap Prestasi Belajar Siswa di SMK Katolik ST Lois Randublatung, Journal Bunda Muliah, Vol. 3 No. 2, Hal. 40-51

Aritonang, K.T., 2008, Minat dan Motivasi dalam Meningkatkan Hasil Belajar Siswa, Jurnal Pendidikan Penabur, No. 10 Tahun ke 7, Hal.11-21

Bahar, Wahono, R.S., 2011, Penentuan Jurusan di SMA dengan Algoritma Fuzzy C-Means, Progresif, Vol. 7 No. 1, Hal. 7-15

Hermanto, N., 2012, Sistem Pendukung Keputusan Menggunakan Metode Simple Additive Weigh Untuk Menentukan Jurusan Pada SMK Bakti Purwokerto, Prosiding pada Seminar Nasional Teknologi Informasi & Komunikasi Terapan, Semarang

Asri, Y., 2013, Aplikasi Penentuan Jurusan Mahasiswa Baru Jalur PMB Dengan Algoritma Fuzzy C-Menas, GERBANG, Edisi Pebruari, Hal. 18-26

Asmiana Z., Bu’ulolo F., Siagian P., 2013, Penggunaan Sistem Inferensi Fuzzy Untuk Menentukan Jurusan di SMA Negeri 1 Bireuen, Saintia Matematika, Vol. 1 No. 3, Hal. 233-247.

Harison, 2013, Analisa Sistem Pendukung Keputusan Penentuan Konsentrasi Jurusan Teknik Mesin UNP Padang, Jurnal TEKNOIF, Vol. 1 No. 1, Hal. 41-47.

Kristanto O., 2014, Penerapan Algoritma Klasifikasi Data Mining ID3 Untuk Menentukan Jurusan Siswa SMA 6 Semarang, Paper Skripsi, Jurusan Teknik Informatika – FASILKOM UDINUS, Semarang.

Swastina L., 2013, Penerapan Algoritma C4.5 Untuk Penentuan Jurusan Mahasiswa, Jurnal GEMA AKTUALITA, Vol. 2 No. 1, Hal. 93-98.

Khikmah L.I.N., Mukid M.A., Prahutama A., 2015, Perbandingan Diskriminan Kuadratik Klasik Dan Diskriminan Kuadratik Robust Pada Kasus Pengklasifikasian Peminatan Peserta Didik, Jurnal GAUSSIAN, Vol. 4, No. 2, Hal. 295-304.

Kusumadewi, S., Purnomo, H., 2010, Aplikasi Logika Fuzzy Untuk Pendukung Keputusan, GRAHA ILMU, Yogyakarta.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.