PENERAPAN THEOREMA BAYES PADA PENILAIAN KELAYAKAN ANGKUTAN KOTA

Taufiq Taufiq(1*),Yulia Yudihartanti(2)
(1) STMIK Banjarbaru
(2) STMIK Banjarbaru
(*) Corresponding Author
DOI : 10.35889/jutisi.v10i1.595

Abstract

ABSTRAK. Dinamika pembangunan bidang perhubungan pada saat ini mengindikasikan terwujudnya sistem transportasi yang handal, dan berkemampuan tinggi mendukung mobilitas barang, jasa dan manusia secara baik. Globalisasi ekonomi serta perkembangan kawasan strategis semakin menuntut penyediaan jasa transportasi yang baik pada masa-masa mendatang. Pentingnya transportasi bagi masyarakat disebabkan oleh beberapa faktor salah satunya yaitu, keadaan tempat tinggal dan tempat yang dituju sangat jauh, dan hal lain yang juga tidak kalah pentingnya akan kebutuhan alat transportasi adalah kebutuhan kenyamanan, keamanan, dan kelancaran masyarakat untuk sampai ketempat tujuan. Salah satu alat transportasi untuk orang dan barang yang banyak ditemui di kota Banjarbaru yaitu angkutan umum atau sering disebut angkot. Angkutan Kota (angkot) merupakan alat transportasi yang sangat dibutuhkan oleh masyarakat yang masih belum memiliki alat transportasi yang memadai atau pun mereka yang tidak ingin repot menggunakan kendaraan pribadi milik mereka, Dengan banyaknya angkot yang setiap tahunnya selalu ada penambahan unit, dapat mempermudah masyarakat untuk menggunakan alat transportasi ini untuk mencapai tujuan dengan harga yang terjangkau. Namun tidak jarang ditemui beberapa angkot lama yang masih beroperasi, tentunya kelayakan angkot lama ini terus turun tiap tahunnya, ini dapat mempengaruhi kenyamanan, kelancaran dan keselamatan masyarakat yang meggunakan jasa alat transportasi angkot ini kurang terjamin. Algoritma Klasifikasi Naive Bayes, algoritma di dukung oleh ilmu Probabilistik dan ilmu statistika khususnya dalam penggunaan data petunjuk untuk mendukung keputusan pengklasifikasian. Pada algoritma Naïve Bayes, semua atribut akan memberikan kontribusinya dalam pengambilan keputusan, dengan bobot atribut yang sama penting dan setiap atribut saling bebas satu sama lain, bahwa sistem ini berjalan baik dan memiliki tingkat keakuratan sampai dengan 90 % sebagai acuan dalam penilaian kelayakan angkutan kota. Kata Kunci: Angkutan Kota, Naïve Bayes, Penilaian Kelayakan

ABSTRACT. The dynamics of development in the field of transportation at this time indicate the realization of a reliable transportation system, and high capability to support the mobility of goods, services and people properly. Economic globalization and the development of strategic areas increasingly demand the provision of good transportation services in the future. The importance of transportation for the community is caused by several factors, one of which is the condition of the place of residence and the destination is very far away, and another thing that is also no less important for the need for transportation is the need for comfort, security, and the smooth running of the community to get to their destination. One of the means of transportation for people and goods that are often found in the city of Banjarbaru is public transportation or often called angkot. City transportation (angkot) is a means of transportation that is very much needed by people who still do not have adequate means of transportation or those who do not want to bother using their private vehicles. With so many angkots that are always added every year, it can make it easier for people to use public transportation. This means of transportation to reach the destination at an affordable price. But not infrequently there are some old angkots that are still operating, of course the feasibility of these old angkots continues to decline every year, this can cause the comfort, smoothness and safety of people who use the services of this angkot transportation is less guaranteed. Naive Bayes Classification Algorithm, the algorithm is supported by probabilistic science and statistics, especially in the use of hint data to support classification decisions. In the Naïve Bayes algorithm, all attributes will contribute to decision making, with the same important attribute weights and each attribute being independent of each other, that this system is running well and has an accuracy level of up to 90% as a reference in the assessment of city transportation. Keywords: Transportation City, Naïve bayes, Eligibility Assessment 

References


Hamidi, D.Z. “Menakar Kelayakan Operasional Bisnis Angkutan Perkotaan pada Era Disrupsi”, Ekonomak, Dec. 2019; 5(3): 1-12.

Bolla, M. E., Sir, T. M., & Kase, N. O. Analisa Kelayakan Tarif Angkutan Umum Dalam Kota Kupang. Jurnal Teknik Sipil, 2015; 4(2): 167-182.

Rish, I. An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence, 2001; 3(22): 41-46.

Taripulloh, Taripulloh. Analisa Kelayakan Investasi Angkutan Kota Jalur Trayek H-10 Di Kecamatan Bumiayu Kabupaten Brebes. PhD Thesis. Fakultas Teknologi Industri Unissula. 2016

Anggrainy, Debora Lomi. Analisis Faktor Uji Kelayakan Pada Moda Transportasi Angkutan Kota Waingapu (Studi Kasus Dinas Perhubungan Kabupaten Sumba Timur). Skripsi, Program Studi Transportasi, Universitas Maritim. 2020.

Friedman, N., Geiger D., and Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997; 29:131–163.

Domingos P. and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning,, 1997; 29:103–130.

Al Fatta Hanif, Analisis & Perancangan Sistem Informasi, Yogyakarta: Andi. 2007

Bahar, B., & Syahrin, R. Model Aplikasi Sistem Pakar Untuk Mendiagnosa Penyakit Gastrointestinal Dengan Theorema Bayes. Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, 2018, 7(1): 1-10.

Costa, V., Fontes, T., Costa, P. M., & Dias, T. G. Prediction of journey destination in urban public transport. In Portuguese Conference on Artificial Intelligence, 2015; 169-180.

Sari, E. Y., Wierfi, A. D., & Setyanto, A. Sentiment Analysis of Customer Satisfaction on Transportation Network Company Using Naive Bayes Classifier. In 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM) 2019; 1-6.

Adilah, M. T., Supendar, H., Ningsih, R., Muryani, S., & Solecha, K. Sentiment Analysis of Online Transportation Service using the Naïve Bayes Methods. In Journal of Physics: Conference Series 2020, 1641(1): 012093


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.