Analisis Tingkat Akurasi Algoritma Moving Average dalam Prediksi Pergerakan Uang Elektronik Bitcoin

Falentino Sembiring(1*),Dudih Gustian(2),Adhitia Erfina(3),Yoga Vikriansyah(4)
(1) Universitas Nusa Putra
(2) Universitas Nusa Putra
(3) Universitas Nusa Putra
(4) Universitas Nusa Putra
(*) Corresponding Author
DOI : 10.35889/jutisi.v10i1.577

Abstract

Abstrak. Nilai Bitcoin dapat berfluktuasi secara tidak terduga selama periode waktu yang singkat sebagai akibat nilai ekonominya yang masih muda, baru, dan pasar yang tidak cair (non liquid). Permasalahan yang umum dihadapi oleh investor dan trader adalah bagaimana meramalkan pergerakan nilai dari uang elektronik Bitcoin pada masa mendatang berdasarkan data yang telah lampau. Investor dan trader hanya melihat pergerakan berdasarkan pergerakan nilai mata uang dunia dan memutuskan melakukan transaksi jual/beli Bitcoin secara intuitif, sehingga sering salah melakukan transaksi beli/jual. Kesalahan ini membuat banyak investor dan trader mengalami kerugian dalam jumlah yang besar. Kerugian yang terjadi dapat diminimalisir dengan menggunakan sebuah algoritma yang dapat meramalkan pergerakan nilai uang elektronik Bitcoin. Penelitian ini bertujuan untuk mengidentifikasi dan menganalisis data pergerakan nilai uang elektronik dengan menggunakan algoritma peramalan Moving Average (MA). Data pergerakan Bitcoin yang diuji selama 5 Tahun untuk menguji tingkat akurasi peramalan. Proses pengumpulan data diambil dari data public yang ada di investing.com dan meta trader 4 dengan bantuan bahasa pemerograman C#. Hasil Uji menunjukkan persentasi benar yang diramalkan pada teknik Buy/beli sebesar 62.86%, sedangkan untuk teknik jual pada periode yang sama menunjukkan persentasi kebenaran prediksi hanya sebesar 25%. Kata kunci: Prediksi, Pergerakan Uang Elektronik, Bitcoin, Moving Avarage

Abstract. Bitcoin's value can fluctuate unpredictably over a short period of time as a result of its young, new economic value and a non-liquid market. The problem commonly faced by investors and traders is how to predict the movement of the value of Bitcoin electronic money in the future based on past data. Investors and traders only see movements based on movements in the value of world currencies and decide to buy / sell Bitcoin intuitively, so they often make wrong buying / selling transactions. This error caused many investors and traders to lose a large amount. Losses that occur can be minimized by using an algorithm that can predict the movement of the value of Bitcoin electronic money. This study aims to identify and analyze data on the movement of electronic money values using the Moving Average (MA) forecasting algorithm. Bitcoin movement data tested for 5 years to test the accuracy of forecasting. The data collection process is taken from public data available on investing.com and meta trader 4 with the help of the C# programming language. The test results show that the correct percentage predicted in the Buy / buy technique is 62.86%, while for the selling technique in the same period it shows the percentage of correct predictions is only 25%. Keywords: Prediction, Electronic Money Movement, Bitcoin, Moving Avarage

References


Detzel, A., Liu, H., Strauss, J., Zhou, G., & Zhu, Y. Bitcoin: Predictability and profitability via technical analysis. SSRN Electronic Journal, 2018: 1-35.

El Jebari, O., & Hakmaoui, A. Are bitcoin investors overconfident? A FIEGARCH approach. In 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), 2018, November: 43-48

Sembiring, F. Pengaruh Indikator Bollinger Band Pada Akurasi Prediksi Pergerakan Nilai Tukar Mata Uang Menggunakan Set Indikator Kermanshahi, Tugas AKhir, Universitas Komputer Indonesia, 2017

Ningsih, L. W., & Nababan, A. A. Perancangan Aplikasi Untuk Prediksi Pengeluaran Dana Desa Dengan Metode Algoritma Moving Average. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 2021, 3(3): 103-108.

Pradibta, H., & al Saffa, A. U. N. Pengembangan Sistem Informasi Penjualan dan Peramalan Jual Beli Menggunakan Metode Weighted Moving Average (Studi Kasus Toko Emas Maju Sari Kota Malang). Jurnal Informatika Polinema, 2016, 2(3): 138-138.

Aini, N., Sinurat, S., & Hutabarat, S. A. Penerapan Metode Simple Moving Average Untuk Memprediksi Hasil Laba Laundry Karpet Pada CV. Homecare. JURIKOM (Jurnal Riset Komputer), 2018, 5(2): 167-175.

Hartati, H., & Fitriyadi, F. Prediksi Pengadaan Pupuk Bersubsidi Menggunakan Metode Moving Averages Pada Dinas Pertanian Tanaman Pangan Dan Hortikultura. Progresif: Jurnal Ilmiah Komputer, 2017, 13(1): 1643-1650

Diarsih, I. H., Tarno, T., & Rusgiyono, A. PEMODELAN PRODUKSI BAWANG MERAH DI JAWA TENGAH DENGAN MENGGUNAKAN HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE–ADAPTIVE NEURO FUZZY INFERENCE SYSTEM. Jurnal Gaussian, 2018, 7(3): 281-292.

Pawestri, V., Setiawan, A., & Linawati, L. Pemodelan data penjualan mobil menggunakan model autoregressive moving average berdasarkan metode bayesian. Jurnal Sains dan Edukasi Sains, 2019, 2(1): 26-35.

Khasanah, S. U., Indriyanti, A. D., & Andriani, A. Sistem Peramalan Penjualan Tas Pada Toko Firdaus Bag Berbasis Web Menggunakan Metode Moving Average. Inovate: Jurnal Ilmiah Inovasi Teknologi Informasi, 2020, 4(2): 28-36.

Roy, S., Nanjiba, S., & Chakrabarty, A. Bitcoin price forecasting using time series analysis. In 2018 21st International Conference of Computer and Information Technology (ICCIT), IEEE, 2018, December: 1-5

Hong, S., & Kim, H. Analysis of Bitcoin exchange using relationship of transactions and addresses. In 2019 21st International Conference on Advanced Communication Technology (ICACT), IEEE, 2019, February: 67-70

Garg, S. Autoregressive integrated moving average model-based prediction of bitcoin close price. In 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, 2018, December: 473-478.

Sembiring, F., & Sari, D. P. Design Process Data Storage and Organize Data Scraping. INTEGRATED (Journal of Information Technology and Vocational Education), 2019, 1(1): 22-26.

Gustian, D., Yulitasari, S., & Hundayani, D. Comparison of C4. 5 method-based optimization algoritm to determine eligibility of beneficiaries of direct community assistance (Case study: Kelurahan Cicurug). In 2017 International Conference on Computing, Engineering, and Design (ICCED), IEEE, 2017, November: 1-6

Erfina, A., & Putra, Y. H. Irony Sentence Detection Techniques Using Fuzzy Historical Classifier. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, November, 662(6): 062004.

Pahmi, S., Arianti, N. D., Fahrudin, I., Amalia, A. Z., Ardiansyah, E., & Rahman, S. Estimated Missing Data on Multiple Linear Regression Using Algorithm EM (Expectation-Maximization) for Prediction Revenue Company. In 2018 International Conference on Computing, Engineering, and Design (ICCED), IEEE, 2018, September: 81-86.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.