Analisis Topik Skripsi Menerapkan Pemodelan Latent Dirichlet Allocation

Wahyudi Ariannor(1*),Erwin Arry Kusuma(2),Andita Suci Pratiwi(3)
(1) STMIK BANJARBARU
(2) STMIK BANJARBARU
(3) STMIK BANJARBARU
(*) Corresponding Author
DOI : 10.35889/jutisi.v13i3.2271

Abstract

At XYZ University, the alignment of thesis titles with the vision of each study program has never been analyzed. The sheer volume of thesis titles makes conventional analysis challenging. Therefore, an automated and rapid analysis technique is needed. Topic modeling with the Latent Dirichlet Allocation (LDA) model offers a solution for facilitating topic analysis. This study compares topic modeling results with and without stemming in data preprocessing. Topic modeling without stemming yielded higher coherence scores compared to stemming, with scores of 0.336 for the Informatics Engineering program and 0.446 for the Information Systems program. Based on the topic modeling analysis, it was found that the thesis topics have a clear focus aligned with the vision and mission of each study program.

Keywords: Stemming; coherence score;Thesis titles; Vision and mission; Topic modeling

 

Abstrak

Pada perguruan tinggi XYZ, judul-judul skripsi yang telah ada belum pernah dilakukan analisis kesesuaian topik dengan visi masing-masing program studi. Jumlah judul-judul skripsi yang begitu banyak akan sulit jika dianalisis secara konvensional. Sehingga diperlukan teknik yang dapat melakukan analisis otomatis dengan cepat. Teknik pemodelan topik dengan model Latent Dirichlet Allocation (LDA) dapat menjadi solusi untuk mempermudah menganalisis topik. Penelitian ini membandingkan hasil pemodelan topik antara hasil dengan menerapkan stemming dan tanpa stemming pada pra-pemrosesan data. Pemodelan topik tanpa proses stemming menghasilkan Coherence Score yang lebih tinggi dibandingkan dengan proses stemming, yaitu 0,336 untuk program studi Teknik Informatika dan 0,446 untuk program studi Sistem Informasi. Berdasarkan analisis pemodelan topik, ditemukan bahwa topik-topik skripsi memiliki fokus yang jelas sesuai dengan visi dan misi masing-masing program studi.

 

Keywords


Stemming; Skor koherensi; Judul skripsi; Visi misi; Pemodelan topik

References


KEMDIKBUDRISTEK RI, “Pencarian: KBBI Daring,” KBBI Daring, 2016. [Online]. Available: https://kbbi.kemdikbud.go.id. [Diakses 22 Mei 2024].

J. Kim, “An Exploratory Study on the Meaning of Institutional Research (IR),” The Korean Society for the Study of Local Education Management, vol. 26, no. 3, pp. 55-81, 2023.

T. Muhayat, A. Fauzi dan J. Indra, “Analisis Sentimen Terhadap Komentar Video Youtube Menggunakan Support Vector Machines,” Progresif: Jurnal Ilmiah Komputer, vol. 19, no. 1, pp. 231-240, 2023.

A. R. D. Astuti dan N. Cahyono, “Analisis Topic Modelling Persepsi Pengguna Internet Menggunakan Metode Latent Dirichlet Allocation,” Indonesian Journal of Computer Science, vol. 12, no. 1, pp. 326-334, 2023.

U. Chauhan dan A. Shah, “Topic Modeling Using Latent Dirichlet allocation: A Survey,” ACM Computing Surveys (CSUR), vol. 54, no. 7, pp. 1-35, 2021.

S. Bhutada, Topic Modeling Using Variations On Latent Dirichlet Allocation, Raleigh: Lulu Publication, 2020.

T. Titiana dan D. H. Bangkalang, “Analisis Dan Penerapan Topic Modeling Pada Judul Tugas Akhir Mahasiswa Menggunakan Metode Latent Dirichlet Allocation (LDA),” Jurnal Ilmiah Penelitian dan Pembelajaran Informatika (JIPI), vol. 8, no. 4, pp. 1275-1287, 2023.

T. A. E. Putri, T. Widiharih dan R. Santoso, “Penerapan Tuning Hyperparameter Randomsearchcv Pada Adaptive Boosting Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung,” Jurnal Gaussian, vol. 11, no. 3, pp. 397-406, 2022.

H. Koh dan M. Fienup, “Topic Modeling as a Tool for Analyzing Library Chat Transcripts,” Information Technology and Libraries, vol. 40, no. 3, pp. 1-24, 2021.

Y. Sahria dan D. H. Fudholi, “Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation),” Rekayasa Sistem dan Teknologi Informasi (RESTI), vol. 4, no. 2, pp. 336-344, 2020.

L. Bayuaji dan A. Wahyudi, “Analisis Trend Topik Penelitian Tesis Pada Program Studi Magister Ilmu Komputer Universitas Budi Luhur Menggunakan Metode Latent Dirichlet Allocation (LDA),” Faktor Exacta, vol. 17, no. 1, pp. 77-84, 2024.

S. Mifrah dan E. H. Benlahmar, “Topic Modeling Coherence: A Comparative Study between LDA and NMF Models using COVID’19 Corpus,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 4, pp. 5756-5761, 2020.

U. Naseem, I. Razzak dan P. W. Eklund, “A survey of pre-processing techniques to improve short-text quality: a case study on hate speech detection on twitter,” vol. 80, no. November 2021, pp. 35239-35266, 2020.

W. Ariannor, E. A. Kusuma, F. Fadilah dan M. Arsyad, “Analyzing User Sentiments in Motor Vehicle Tax Applications Using the Naïve Bayes Algorithm,” Progresif: Jurnal Ilmiah Komputer, vol. 20, no. 1, pp. 91-101, 2024.

R. Mohemad, N. N. M. Muhait, N. M. M. Noor dan N. F. A. Mamat, “A Comparative Study of Stemming Techniques on the Malay Text,” International Journal of Advanced Computer Science and Applications(IJACSA), vol. 14, no. 12, pp. 133-139, 2023.

X. Yang, K. Yang, T. Cui, M. Chen dan L. He, “A Study of Text Vectorization Method Combining Topic Model and Transfer Learning,” Processes, vol. 10, no. 2, pp. 1-16, 2022.

D. Z. T. Kannitha, M. Mustafid dan P. Kartikasari, “Pemodelan Topik Pada Keluhan Pelanggan Menggunakan Algoritma Latent Dirichlet Allocation Dalam Media Sosial Twitter,” Jurnal Gaussian, vol. 11, no. 2, pp. 266-277, 2022.

S. Mifrah dan E. H. Benlahmar, “Topic Modeling Coherence: A Comparative Study between LDA and NMF Models using COVID’19 Corpus,” International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), vol. 9, no. 4, pp. 5756-5761, 2020.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.