Klasifikasi Hama Ulat Pada Citra Daun Sawi Berbasis Convolutional Neural Network Dengan Model Xception
Abstract
Mustard plants belong to the Cruciferae (cabbage) family. Mustard cultivation cannot be separated from disease and pest threats. The main pests and diseases in mustard plants are caper, armyworms, grasshoppers, and snails. This research aims to classify caterpillar pests in mustard leaf images using the Xception architecture model based on Convolutional Neural Network. The mustard leaf dataset used consisted of 500 images of mustard leaves without pests and 500 images of mustard leaves containing caterpillar pests. The preprocessing process includes image cropping, image normalization, image augmentation and median filtering processes. The classification stage uses the Convolution Neural Network method with the Xception architecture. The results of classification using the Xception architectural model with trials on training data with 600 training data, 200 test data and 200 validation data produced the highest accuracy value of 96%, sensitivity value of 96% and specificity value of 97%.
Keywords: Mustard plants; Median filtering; Classification; Convolutional neural network; Xception
Abstrak
Tanaman sawi merupakan famili Cruciferae (Kubis-kubisan). Budidaya tanaman sawi tidak akan terlepas dari penyakit dan ancaman hama. Hama dan penyakit utama pada tanaman sawi yaitu kaper, ulat grayak, belalang, dan siput. Penelitian ini bertujuan untuk mengklasifikasi hama ulat pada citra daun sawi dengan model arsitektur Xception berbasis Convolutional Neural Network. Dataset daun sawi yang digunakan berjumlah 500 citra daun sawi tanpa hama dan 500 citra daun sawi yang terdapat hama ulat. Proses preprocessing meliputi tahapan cropping citra, normalisasi citra, augmentasi citra dan proses median filtering. Tahapan klasifikasi menggunakan metode Convolution Neural Network dengan arsitektur Xception. Hasil dari klasifikasi dengan model arsitektur Xception dengan uji coba pada pelatihan data dengan 600 data latih, 200 data uji dan 200 data validasi menghasilkan nilai akurasi paling tinggi sebesar 96%, nilai sensitifitas 96% dan nilai spesifisitas 97%.
Keywords
References
C.L.P. Chen, "Deep learning for pattern learning and recognition", 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, pp. 17-17, 2015. doi: 10.1109/SACI.2015.7208200.
M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K. Meghana and S. Apoorva, "Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning", 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, pp. 2319-2323, 2018. doi:10.1109/RTEICT42901. 2018.9012507.
M.M Kamal, A. N. I. Masazhar, and F. A. Rahman,"Classification of Leaf Disease from Image Processing Technique", Indonesian Journal of Electrical Engineering and Computer Science, vol.10, pp. 191-200, 2018. DOI: http://doi.org/10.11591/ijeecs.v10.i1.pp191-200
K. K. Leong and L. L. Tze, "Plant Leaf Diseases Identification using Convolutional Neural Network with Treatment Handling System", 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, pp. 39-44, 2020. doi: 10.1109/I2CACIS49202.2020.9140103.
R. H. Hridoy, A. D. Arni and M. A. Hassan, "Recognition of Mustard Plant Diseases Based on Improved Deep Convolutional Neural Networks", 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, pp. 1-6, 2022. doi: 10.1109/TENSYMP54529.2022.9864487.
Kawasaki, Y.; Uga, H.; Kagiwada, S.; Iyatomi, H., “Basic study of automated diagnosis of viral plant diseases using convolutional neural networks”, In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, pp. 638–645, December 2015. doi:10.1007/978-3-319-27863-6_59
S. H. Lee, C. S. Chan, P. Wilkin and P. Remagnino, "Deep-plant: Plant identification with convolutional neural networks", 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 452-456, 2015. doi: 10.1109/ICIP.2015.7350839.
Mohanty, S.P.; Hughes, D.P.; Salathe, M., “Using Deep Learning for Image-Based Plant Disease Detection”, Front. Plant. Sci. Vol 7, 1419, 2016. doi: 10.3389/fpls.2016.01419.
M. Fraiwan, E, Faouri, N. Khasawneh, “Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning”, Plants, Basel, Switzerland, vol. 11,20 2668. 11 Oct. 2022. doi:10.3390/plants11202668
Chao X, Hu X, Feng J, Zhang Z, Wang M, He D., “Construction of Apple Leaf Diseases Identification Networks Based on Xception Fused by SE Module”, Applied Sciences. 11(10):4614, 2021. https://doi.org/10.3390/app11104614
Y. P. Irawan, I. Susilawati, “Klasifikasi Jenis Aglaonema Berdasarkan Citra Daun Menggunakan Convolutional Neural Network (CNN)”, Jurnal Information System and Artificial Intelligence, Vol.2, No. 2, Mei 2022.
M. A. Jasim and J. M. AL-Tuwaijari, "Plant Leaf Diseases Detection and Classification Using Image Processing and Deep Learning Techniques", 2020 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, pp. 259-265, 2020. doi: 10.1109/CSASE48920.2020.9142097.
R. Soekarta, N. Nurdjan, and A. Syah, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN)”, Jurnal Teknik Informatika, 8(2), pp. 143–151, Mar. 2023. doi: 10.33506/insect.v8i2.2356.
F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions", 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 20, pp. 1800-1807, 2017. doi: 10.1109/CVPR.2017.195.
K.M. Ting, “Confusion Matrix”. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA, 2010. https://doi.org/10.1007/978-0-387-30164-8_157
How To Cite This :
Refbacks
- There are currently no refbacks.