Perancangan Dashboard Business Intelligence Untuk Data Piutang Pada Apotek X

Josh Louis(1*),Dedi Trisnawarman(2),Novario Jaya Perdana(3)
(1) 
(2) Universitas Tarumanagara
(3) Universitas Tarumanagara
(*) Corresponding Author
DOI : 10.35889/jutisi.v12i3.1666

Abstract

The development of information technology and increasingly fierce business competition have encouraged companies, including pharmacies, to improve their data and information management. One asset that is very important to manage efficiently in a pharmacy is receivables data. Receivables data includes information about customer debts that must be paid to the pharmacy. Therefore, it is very important to design and implement an effective dashboard to monitor receivables data at Pharmacy must be paid, as well as the grace period for payment of receivables. The data used in this dashboard comes from the period 2022 to 2023 for receivables at Pharmacy X. The process of designing this dashboard will follow the waterfall method. The results of this dashboard will be a visualization of accounts receivable data, the value of receivables that must be paid, the remaining value of receivables that must be paid, and the grace period for payment of receivables. The aim is to make it easier for users to monitor information regarding receivables data from 2022 to 2023 at Pharmacy X. This visualization will help users monitor the flow of receivables data at the pharmacy.

Keywords: Receivables data; Pharmacy; Dashboard; Waterfall

 

Abstrak

Perkembangan teknologi informasi dan persaingan bisnis yang semakin ketat mendorong perusahaan, termasuk apotek, untuk meningkatkan pengelolaan data dan informasinya. Salah satu aset yang sangat penting untuk dikelola secara efisien di apotek adalah data piutang. Data piutang mencakup informasi mengenai hutang pelanggan yang harus dibayarkan kepada apotek. Oleh karena itu, sangat penting untuk merancang dan menerapkan dashboard yang efektif untuk memantau data piutang di Apotek yang harus dibayar, serta masa tenggang pembayaran piutang. Data yang digunakan pada dashboard ini berasal dari periode tahun 2022 sampai dengan tahun 2023 untuk piutang pada Apotek X. Proses perancangan dashboard ini akan mengikuti metode SDLC Waterfall. Hasil dari dashboard ini akan berupa visualisasi data piutang, nilai piutang yang harus dibayar, sisa nilai piutang yang harus dibayar, dan masa tenggang pembayaran piutang. Tujuannya untuk memudahkan pengguna dalam memantau informasi mengenai data piutang tahun 2022 hingga tahun 2023 di Apotek X. Visualisasi ini akan membantu pengguna dalam memantau alur data piutang di apotek.

 

Keywords


Data piutang; apotek; dashboard; Waterfall

References


J. Dee, N. Dhuhaibawi, and J. C. Hayden, “A systematic review and pooled prevalence of burnout in pharmacists,” International Journal of Clinical Pharmacy, vol. 45, no. 5. Springer Science and Business Media Deutschland GmbH, pp. 1027–1036, Oct. 01, 2023. doi: 10.1007/s11096-022-01520-6.

I. Eldooma, M. Maatoug, and M. Yousif, “Pharmaceutical Care Within Community Pharmacies: Tools Availability and Pharmacists’ Views, Wad-Medani, Sudan,” Integr Pharm Res Pract, vol. Volume 12, pp. 37–47, Feb. 2023, doi: 10.2147/iprp.s399265.

F. Gusmiadi, I. Yasin, N. Penulis, K. : Finki, and G. Submited, “Perancangan Sistem Pengelolaan Data Piutang pada PT Atosim Lampung,” vol. 4, no. 2, pp. 121–126, 2023, doi: 10.33365/jtsi.v4i2.2559.

T. M. Connolly and C. E. Begg, Database systems : a practical approach to design, implementation and management.

A. P. Setyan and I. P. A. E. Pratama, “POWER BUSINESS INTELLIGENCE DASHBOARD VISUALIZATION of LOSSES NUMBER of MOTOR VEHICLE in EAST JAVA, INDONESIA,” Jurnal Komputer dan Informatika, vol. 11, no. 1, pp. 68–75, Mar. 2023, doi: 10.35508/jicon.v11i1.9920.

N. Valle et al., “Predict or describe? How learning analytics dashboard design influences motivation and statistics anxiety in an online statistics course,” Educational Technology Research and Development, vol. 69, no. 3, pp. 1405–1431, Jun. 2021, doi: 10.1007/s11423-021-09998-z.

D. Suša Vugec, V. Bosilj Vukšić, M. Pejić Bach, J. Jaklič, and M. Indihar Štemberger, “Business intelligence and organizational performance: The role of alignment with business process management,” Business Process Management Journal, vol. 26, no. 6, pp. 1709–1730, Nov. 2020, doi: 10.1108/BPMJ-08-2019-0342.

N. Martins, S. Martins, and D. Brandão, “Design Principles in the Development of Dashboards for Business Management,” in Springer Series in Design and Innovation, vol. 16, Springer Nature, 2022, pp. 353–365. doi: 10.1007/978-3-030-79879-6_26.

V. H. Trieu, “Getting value from Business Intelligence systems: A review and research agenda,” Decis Support Syst, vol. 93, pp. 111–124, Jan. 2017, doi: 10.1016/j.dss.2016.09.019.

W. Nugraha, M. Syarif, and W. S. Dharmawan, “PENERAPAN METODE SDLC WATERFALL DALAM SISTEM INFORMASI INVENTORI BARANG BERBASIS DESKTOP,” JUSIM (Jurnal Sistem Informasi Musirawas), vol. 3, no. 1, pp. 22–28, Jun. 2018, doi: 10.32767/jusim.v3i1.246.

A. R. Ramadan, A. Junaidi, and M. A. Azis, “KAI Commuter Employee Development Application Using The Waterfall Method,” Informatics and Software Engineering, vol. 1, no. 2, pp. 44–50, Nov. 2023, doi: 10.58777/ise.v1i2.93.

N. Fajriati and K. Budiman, “Web-Based Employee Attendance System Development Using Waterfall Method,” Journal of Advances in Information Systems and Technology, vol. 3, no. 2, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/jaist

H. M. T. Afriadi and F. L. Hadianastuti, “Rancang Bangun Sistem Informasi Dashboard Pengendalian Produksi Welding Menggunakan Microsoft Power BI pada PT ABC,” Journal of Manufacturing and Enterprise Information System, vol. 1, no. 1, pp. 21–31, Apr. 2023, doi: 10.52330/jmeis.v1i1.86.

A. Jannah, A. M. Meuraxa, and A. Azzahrah, “Web Based E-Commerce System Design at EXO Shop Using The Waterfall Method,” Hanif Journal of Information Systems, vol. 1, no. 1, pp. 1–5, Aug. 2023, doi: 10.56211/hanif.v1i1.3.

A. Sajji, Y. Rhazali, and Y. Hadi, “A methodology of automatic class diagrams generation from source codeusing Model-Driven Architecture and Machine Learning to achieve Energy Efficiency,” in E3S Web of Conferences, EDP Sciences, Aug. 2023. doi: 10.1051/e3sconf/202341201002.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF

How To Cite This :

Refbacks

  • There are currently no refbacks.