Real-time Multi-Level Wireless Control Model based on IoT for Wheeled Robots
Abstract
Demands regarding a wireless control system for all-wheeled soccer-playing robots in the 2023 Indonesian robot contest require significant changes to the STMIK Banjarbaru's robot design. Therefore, the team designed and tested the robot control program using an ATMega2560 microcontroller and a laptop on top of the robot. The wheeled robot used another laptop as a controller outside the robot. This research reprogrammed the soccer player's wheeled robot prototype from the microcontroller controller side regarding the robot's movement using a holonomic model. Then, the microcontroller is programmed to receive commands to move the robot from the laptop installed on the robot via serial communication with a USB cable. This study also created an application in the form of a GUI (Graphical User Interface) on the laptop on the robot. Then, it is also ready to be controlled wirelessly from the laptop outside the robot. The test results show that this research has overcome the main problems related to response time and consistency in carrying out essential motor functions, including forward, backward, sliding, and rotating movements on the robot. Additionally, this experiment successfully met the challenges of performing specialized functions such as motor dribbling and ball kicking with a significant level of success. Wireless test results using access point frequencies of 2.4 GHz and 5.8 GHz also produced exemplary achievements, demonstrating the robot's ability to communicate efficiently in various environments.
Keywords: ATMega2560 microcontroller; Robot; Holonomic; Wireless control; Response time
Abstrak
Tuntutan terkait sistem kendali nirkabel atas semua robot beroda pemain bola di kontes robot Indonesia tahun 2023 menuntut perubahan signifikan terhadap rancangan robot oleh tim di STMIK Banjarbaru. Karenanya tim telah merancang bangun sekaligus mengujicoba program pengendali robot menggunakan mikrokontroler ATMega2560 serta laptop yang diletakkan di atas robot. Selain itu juga digunakan laptop lain sebagai pengendali di luar robot. Adapun yang dilakukan adalah dengan memrogram ulang prototipe robot beroda pemain bola dari sisi pengendali mikrokontroler terkait gerakan robot dengan model holonomic. Kemudian Mikrokontroler diprogram untuk juga bisa menerima perintah menggerakkan robot dari laptop yang dipasang di robot melalui komunikasi serial dengan kabel USB. Selanjutnya, pada laptop yang ada di robot dibuatkan aplikasi berupa GUI (Graphical User Interface) untuk kemudian juga siap dikendalikan secara nirkabel dari laptop di luar robot. Hasil pengujian menunjukkan bahwa penelitian ini berhasil mengatasi permasalahan utama terkait waktu respon dan konsistensi dalam menjalankan fungsi motorik dasar, termasuk pergerakan maju, mundur, geser, dan berputar pada robot. Selain itu, eksperimen ini berhasil menghadapi tantangan dalam menjalankan fungsi khusus seperti motor drible dan penendang bola dengan tingkat keberhasilan yang signifikan. Hasil pengujian nirkabel menggunakan frekuensi akses poin 2.4 GHz dan 5.8 GHz juga menghasilkan pencapaian yang baik, menunjukkan kemampuan robot untuk berkomunikasi secara efisien dalam berbagai lingkungan.
Keywords
References
Muliady and G. Arisandy, “Implementasi Sistem Gerak Holonomic Pada Robot Krsbi Beroda 2017 Implementation Of Holonomic Motion In Indonesian Soccer Wheeled Robot Contest 2017 Pada Kontes Robot Indonesia 2017 divisi Kontes Robot Sepak Bola Indonesia,” J. Tek. dan Ilmu Komput., vol. 7, no. 25, pp. 9–25, 2017.
F. Tajti, G. Szayer, B. Kovács, and P. Korondi, “Robot base with holonomic drive,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, vol. 19, no. 3, pp. 5715–5720, doi: 10.3182/20140824-6-za-1003.00785.
B. Rahmani, H. Aprilianto, P. T. Informatika, and S. Banjarbaru, “Model Kendali Multi Kontroler untuk Robot Humanoid dengan 19 Derajat Kebebasan,” in Seminar Nasional KNS&1 STIKOM Bali, 2015, pp. 9–10.
B. Rahmani, A. Harjoko, T. K. Priyambodo, and H. Aprilianto, “Early Model of Vision-Based Obstacle Mapping Utilizing Grid-Edge-Depth Map,” Int. J. Eng. Adv. Technol., vol. 9, no. 2, pp. 4519–4523, 2019, doi: 10.35940/ijeat.B4550.129219.
R. N. Handika and B. Rahmani, “Sistem Deteksi Arah Gerak Bola Menggunakan Metode Optical Flow pada Robot Goal Keeper Beroda,” Progresif J. Ilm. Komput., vol. 19, no. 2, pp. 623–635, 2023, [Online]. Available: http://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/view/1455/764.
B. Rahmani, A. Harjoko, and T. K. Priyambodo, “A vision-based real-time obstacle avoidance’s rules utilising grid-edge-depth map,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 1, pp. 513–525, 2020, doi: 10.11591/ijeecs.v19.i1.pp513-525.
M. N. Hifzi and B. Rahmani, “Model Kalkulasi Jarak pada Proses Deteksi Bola Menggunakan Metode Color-Block Detection,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 12, no. 2, pp. 394–404, 2023, doi: 10.35889/jutisi.v12i2.1230.
C. Zhu, G. Giorgi, Y. H. Lee, and C. Gunther, “Enhancing accuracy in visual SLAM by tightly coupling sparse ranging measurements between two rovers,” 2018 IEEE/ION Position, Locat. Navig. Symp. PLANS 2018 - Proc., pp. 440–446, 2018, doi: 10.1109/PLANS.2018.8373412.
S. Mushtaq, G. Alandjani, S. F. Abbasi, and N. Abosaq, “Hybrid Geo-Location Routing Protocol for Indoor and Outdoor Positioning Applications,” Int. J. Adv. Res. Artif. Intell., vol. 10, no. 7, pp. 1–7, 2019.
P. P. Ray, “A survey on Internet of Things architectures,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no. 3, pp. 291–319, 2018, doi: 10.1016/j.jksuci.2016.10.003.
T. Saarikko, U. H. Westergren, and T. Blomquist, “The Internet of Things : Are you ready for what ’ s coming ?,” Bus. Horiz., vol. 60, no. 5, pp. 667–676, 2020, doi: 10.1016/j.bushor.2017.05.010.
J. S. P. Siy, R. K. C. Chan, and R. G. Baldovino, “Implementation of a real-time appearance-based mapping in a fully autonomous urban search robot,” 2018 IEEE 10th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2018, pp. 1–4, 2019, doi: 10.1109/HNICEM.2018.8666380.
K. Pendidikan et al., “Kementerian pendidikan, kebudayaan, riset, dan teknologi,” 2023.
R. A. Fatekha, B. S. B. Dewantara, and H. Oktavianto, “Sistem Deteksi Bola pada Robot Kiper Pemain Sepakbola Beroda,” J. Integr., vol. 13, no. 2, pp. 127–134, 2021, doi: 10.30871/ji.v13i2.3133.
T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart, “Map API -Scalable Decentralized Map Building for Robots,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6241–6247.
A. U. Haque and A. Nejadpak, “Obstacle Avoidance Using Stereo Camera,” Comput. Vis. Pattern Recognit., 2017, [Online]. Available: http://arxiv.org/abs/1705.04114.
B. Rahmani, A. Harjoko, and T. K. Priyambodo, “Grid-edge-depth map building employing sad with sobel edge detector,” Int. J. Smart Sens. Intell. Syst., vol. 10, no. 3, pp. 551–566, 2017, doi: 10.21307/ijssis-2017-223.
I. Hafidz, D. Adiputra, B. Montolalu, W. A. Prastyabudi, H. Widyantara, and M. A. Afandi, “Robot Logistik berbasis IoT untuk Memonitoring Pasien dan Pengiriman Logistik Selama Pandemi COVID-19,” J. Nas. Tek. Elektro, vol. 9, no. 3, pp. 182–188, 2020.
M. Pushpavalli, L. N. Manikanta, P. Sivagami, P. Saikumar, P. Abirami, and M. V. Reddy, “Smart Home Automation Controlled by Robot using Matlaband Arduino,” no. 6, pp. 1181–1184, 2019, doi: 10.35940/ijeat.F1198.0986S319.
S. Singh and E. Singla, “Realization of task-based designs involving DH parameters: a modular approach,” Intell. Serv. Robot., vol. 9, no. 3, pp. 289–296, 2016, doi: 10.1007/s11370-015-0186-x.
M. Papoutsidakis, “Intelligent Design and Algorithms to Control a Stereoscopic Camera on a Robotic Workspace Z-error Z-Error,” Int. J. Comput. Appl., vol. 167, no. 12, pp. 32–35, 2017.
Pusat Prestasi Nasional, “Buku Pedoman Kontes Robot Indonesia ( Kri ) Tahun 2023,” 2023.
How To Cite This :
Refbacks
- There are currently no refbacks.