Analisis Sentimen BRImo dan BCA Mobile Menggunakan Support Vector Machine dan Lexicon Based
Abstract
Services available on mobile banking can make transactions and request financial information, such as checkimg balances, viewing account mutation history and the like even so, it is felt that there are still opinions and complaint submitted by users in the Play Store review column of the application. Based on these problems, sentimen analysis research was carried out on reviews of the BRImo and BCA Mobile applications on the Play Store as research objects using the Support Vector Machine and Lexicon Based classification algorithms. Based on this result, it is known that the BCA Mobile application has more negative sentiment than the BRImo application. The sentiment classification of application reviews in testing the Support Vector Machine and Lexicon Based on the BRImo application obtained 94% accuracy and, on the BCA, Mobile application the accuracy was 95%
Keywords: Lexicon Based; Mobile Banking; Play Store; Sentiment Analysis; Support Vector Machine
Abstrak
Layanan yang ada pada mobile banking dapat melakukan transaksi dan meminta informasi keuangan, seperti memeriksa saldo, melihat riwayat mutasi rekening, dan sejenisnya. Meskipun demikian, dirasa masih terdapat pendapat dan keluhan yang disampaikan oleh pengguna pada kolom ulasan play store dari aplikasi tersebut. Berdasarkan permasalahan tersebut dilakukan penelitian analisis sentimen pada ulasan aplikasi BRImo dan BCA Mobile di Play Store sebagai objek penelitian menggunakan algoritma klasifikasi Support Vector Machine dan Lexicon Based. Berdasarkan hasil tersebut diketahui bahwa aplikasi BCA Mobile memiliki sentimen negatif yang lebih banyak dibandingkan aplikasi BRImo. Klasifikasi sentimen ulasan aplikasi dalam pengujian menggunakan Support Vector Machine pada aplikasi BRImo didapatkan accuracy 94%, Lalu pada aplikasi BCA Mobile accuracy 95%.
Keywords
References
F. Bei and S. Saepudin, “Analisis Sentimen Aplikasi Tiket Online Di Play Store Menggunakan Metode Support Vector Machine (Svm),” Sismatik, vol. 01, no. 01, pp. 91–97, 2021.
M. Hamka, N. Alfatari, and D. Ratna Sari, “Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 64, 2022, doi: 10.30865/json.v4i1.4740.
A. Putri and A. Muzakir, “Analisis Sentimen Cyberbullying Kpop Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Ilm. Indones., vol. 2, no. 8.5.2017, pp. 2003–2005, 2022, [Online]. Available: https://jurnal.syntaxliterate.co.id/index.php/syntax-literate/article/view/9334
A. Deolika, K. Kusrini, and E. T. Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” J. Teknol. Inf., vol. 3, no. 2, p. 179, 2019, doi: 10.36294/jurti.v3i2.1077.
F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.
A. F. Riyadi, F. R. Rahman, M. A. Nofa Pratama, M. K. Khafidli, and H. Patria, “Pengukuran Sentimen Sosial Terhadap Teknologi Kendaraan Listrik: Bukti Empiris di Indonesia,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 2, p. 141, 2021, doi: 10.36448/expert.v11i2.2171.
H. P. Doloksaribu and Y. T. Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 16, no. 1, pp. 1–11, 2022, doi: 10.47111/jti.v16i1.3747.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
M. Khoirul Insan, U. Hayati, And O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023.
W. F. Sari, R. Rahim, and F. Adrianto, “Analisis Sentiment Review Pengguna Bca Mobile Menggunakan Teks Mining,” CAKRAWALA Repos. IMWI, vol. 6, no. 2, pp. 981–987, 2023, doi: https://doi.org/10.52851/cakrawala.v6i2.295.
N. E. Oktaviana, Y. A. Sari, and I. Indriati, “Analisis Sentimen terhadap Kebijakan Kuliah Daring Selama Pandemi Menggunakan Pendekatan Lexicon Based Features dan Support Vector Machine,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 2, p. 357, 2022, doi: 10.25126/jtiik.2022925625.
R. D. Wahyuni and A. N. Utomo, “Penggunaan Metode Lexicon Untuk Analisis Sentimen Pada Ulasan Aplikasi Kai Access Di Google Play Store,” J. Rekayasa Inf., vol. 11, no. 2, pp. 134–135, 2022, [Online]. Available: https://ejournal.istn.ac.id/index.php/ rekayasainformasi/article/view/1415
W. M. P. Dhuhita, M. F. K. A. Darmawan, L. Triana, and N. Ankisqiantari, “Perbandingan Algoritma Supervised Learning untuk Klasifikasi Judul Skripsi Berdasarkan Bidang Dosen,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 2, pp. 427–437, 2022, doi: 10.28932/jutisi.v8i2.4960.
I. B. N. W. Manuaba, G. R. Dantes, and G. Indrawan, “Analisis Sentimen Data Provider Layanan Internet Pada Twitter Menggunakan Support Vector Machine Dengan Penambahan Algoritma Levenshtein Distance,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 5, no. 2, pp. 9–17, 2022, doi: 10.47970/siskom-kb.v5i2.261.
P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, 2022, doi: 10.30865/jurikom.v9i4.4673.
N. Aliyah Salsabila, Y. Ardhito Winatmoko, A. Akbar Septiandri, and A. Jamal, “Colloquial Indonesian Lexicon,” Proc. 2018 Int. Conf. Asian Lang. Process. IALP 2018, pp. 226–229, 2019, doi: 10.1109/IALP.2018.8629151.
Andreyestha and Q. Nur Azizah, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 242–253, 2020, doi: https://doi.org/10.28932/jutisi.v6i2.2658.
S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia,” J. Mantik Penusa, vol. 3, no. 1, pp. 236–241, 2019, [Online]. Available: https://t.co/eF
G. R. Ditami, E. F. Ripanti, and H. Sujaini, “Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace,” J. Edukasi dan Penelit. Inform., vol. 8, no. 3, pp. 508–516, 2022.
Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 904–910, 2021, doi: 10.29207/resti.v5i5.3380.
F. E. Kavabilla, T. Widiharih, and B. Warsito, “Analisis Sentimen pada Ulasan Aplikasi Investasi Online Ajaib pada Google Play Menggunakan Metode Support Vector Machine dan Maximum Entropy,” J. Gaussian, vol. 11, no. 4, pp. 542–553, 2023, doi: 10.14710/j.gauss.11.4.542-553.
J. E. Bororing and A. Pasadi, “Implementasi Microsoft Power Bi Untuk Dashboard Visualisasi Data Akademik Mahasiswa Fakultas Teknik Universitas Janabadra,” J. Inf. Interaktif, vol. 7, no. 2, pp. 149–155, 2022.
How To Cite This :
Refbacks
- There are currently no refbacks.