Perbandingan Algoritme Naïve Bayes dan Decision Tree Pada Analisis Sentimen Data Komentar Siswa Pada Aplikasi Digital Teacher Assessment

Ferat Kristanto(1*),Wing Wahyu Winarno(2),Asro Nasiri(3)
(1) Universitas Amikom Yogyakarta
(2) STIE YKPN
(3) Universitas Amikom Yogyakarta
(*) Corresponding Author
DOI : 10.35889/jutisi.v12i2.1193

Abstract

Telkom Purwokerto Vocational High School is a school managed by the Telkom Education Foundation. They use Digital Teacher Assessment (DITA) apps. Students provide comments to the teacher using the DITA application. The collected comment data will be grouped into three categories, namely positive, negative, and neutral. Based on the category of comments requires sentiment analysis in grouping these comments. Sentiment analysis uses lexicon-based. After getting sentiment analysis using lexicon-based, then the words are weighted using TF-IDF and then classified and evaluated. This study uses an algorithm naïve Bayes and a decision tree. So the results of the comparative research on the accuracy of the naïve Bayes algorithm and the decision tree with the decision tree algorithm have the highest level of accuracy, namely 99%. So it can be concluded that using the decision tree algorithm is better at classifying student comment sentiment analysis data.

Keywords: Digital Teacher Assessment; Naïve Bayes; Decision Tree; Lexicon Based; Sentiment Analysis

 

Abstrak

Sekolah Menengah Kejuruan (SMK) Telkom Purwokerto adalah sekolah yang dikelola oleh Yayasan Pendidikan Telkom. Mereka menggunakan aplikasi Digital Teacher Assessment (DITA). Siswa memberikan komentar ke Guru menggunakan aplikasi DITA. Data komentar yang terkumpul akan dikelompokkan menjadi tiga kategori yaitu komentar positif, negatif, dan netral. Berdasarkan kategori komentar membutuhkan analisis sentimen dalam mengelompokkan komentar tersebut. Analisis sentimen menggunaka lexicon based. Setelah mendapatkan analisis sentimen menggunakan lexicon based, selanjutnya kata-kata tersebut diberi bobot menggunakan TF-IDF lalu di klasifikasi dan di evaluasi. Dalam penelitian ini menggunakan algoritme Naïve bayes dan Decision tree. Maka hasil penelitian perbandingan akurasi dari algoritme Naïve bayes dan decision tree dengan algoritme Decision tree memiliki tingkat akurasi yang paling tinggi yaitu 99%. Maka dapat disimpulkan bahwa dengan menggunakan algoritme Decision tree lebih baik dalam mengklasifikasi data analisis sentimen komentar siswa.

 

Keywords


Digital Teacher Assessment; Naïve Bayes; Decision Tree; Lexicon Based; Analisis Sentimen

References


N. Tri Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line,” J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.

N. R. Muntiari and K. H. Hanif, “Klasifikasi Penyakit Kanker Payudara Menggunakan Perbandingan Algoritme Machine Learning,” J. Ilmu Komput. dan Teknol., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.

M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.

M. Alfi, R. Reynaldhi, and Y. Sibaroni, “Analisis Sentimen Review Film pada Twitter menggunakan Metode Klasifikasi Hybrid SVM, Naïve Bayes, dan Decision Tree,” vol. 8, no. 5, pp. 10127–10137, 2021.

Y. Wang, G. Huang, J. Li, H. Li, Y. Zhou, and H. Jiang, “Refined Global Word Embeddings Based on Sentiment Concept for Sentiment Analysis,” IEEE Access, vol. 9, no. 1, pp. 37075–37085, 2021, doi: 10.1109/ACCESS.2021.3062654.

X. Fu, J. Yang, J. Li, M. Fang, and H. Wang, “Lexicon-Enhanced LSTM with Attention for General Sentiment Analysis,” IEEE Access, vol. 6, pp. 71884–71891, 2018, doi: 10.1109/ACCESS.2018.2878425.

A. FATIHIN, “ANALISIS SENTIMEN TERHADAP ULASAN APLIKASI MOBILE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DAN PENDEKATAN LEXICON BASED,” 2022.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

F. S. Pattiiha and Hendry, “Perbandingan Metode K-NN, Naïve Bayes, Decision Tree untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap PT PAL Indonesia,” J. Ris. Komputer), vol. 9, no. 2, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i2.4016.

T. Wiratama Putra, A. Triayudi, and A. Andrianingsih, “Analisis Sentimen Pembelajaran Daring Menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 1, pp. 20–26, 2022, doi: 10.35870/jtik.v6i1.368.

H. Han, Y. Zhang, J. Zhang, J. Yang, and X. Zou, “Improving the performance of lexicon-based review sentiment analysis method by reducing additional introduced sentiment bias,” PLoS One, vol. 13, no. 8, pp. 1–11, 2018, doi: 10.1371/journal.pone.0202523.

A. S. Rusydiana, I. Firmansyah, and L. Marlina, “Sentiment Analysis of Microtakaful Industry: Comparison between Indonesia and Malaysia,” Int. J. Nusant. Islam, vol. 6, no. 1, pp. 20–34, 2019, doi: 10.15575/ijni.v6i1.3004.

N. N. Wilim and R. S. Oetama, “Sentiment Analysis About Indonesian Lawyers Club Television Program Using K-Nearest Neighbor, Naïve Bayes Classifier, And Decision Tree,” IJNMT (International J. New Media Technol., vol. 8, no. 1, pp. 50–56, 2021, doi: 10.31937/ijnmt.v8i1.1965.

I. Hilmy Khairi Idris, Mochammad Ali Fauzi, “Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K-Nearest Neighbors Dan Chi-square,” Syst. Inf. Syst. Informatics J., vol. 3, no. 1, pp. 25–32, 2017, doi: 10.29080/systemic.v3i1.191.

S. Panggabean, W. Gata, and T. A. Setiawan, “Analysis of Twitter Sentiment Towards Madrasahs Using Classification Methods,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 375–389, 2022.

M. Rezapour, “Sentiment classification of skewed shoppers’ reviews using machine learning techniques, examining the textual features,” Eng. Reports, vol. 3, no. 1, pp. 1–13, 2021, doi: 10.1002/eng2.12280.

W. Li, P. Liu, Q. Zhang, and W. Liu, “An improved approach for text sentiment classification based on a deep neural network via a sentiment attention mechanism,” Futur. Internet, vol. 11, no. 4, 2019, doi: 10.3390/FI11040096.

N. Z. Dina, “Tourist sentiment analysis on TripAdvisor using text mining: A case study using hotels in Ubud, Bali,” African J. Hosp. Tour. Leis., vol. 9, no. 2, pp. 1–10, 2020.


The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

Full Text: File PDF (Indonesian)

How To Cite This :

Refbacks

  • There are currently no refbacks.