Implementasi Algoritme Apriori Pada Sistem Persediaan Obat Apotik Puskesmas
Abstract
One line of business that offers health services is the pharmacy, which can help people achieve optimal health. In the pharmacy service, data on drug use are published daily. Inappropriate data processing can result in missing values or damage to the data. To deal with problems that commonly occur in pharmacies, especially at the Bandarharjo health center, a system has been built that can help pharmacists work faster and get accurate information, namely by processing a list of drug information and using the data mining algorithm (Apriori) to find out drug sales patterns as a reference in planning drug placement and controlling future inventory. Trials with RStudio to calculate 100 event data, with a minimum support value parameter of 0.5 and a minimum confidence of 0.5, resulted in 2 rules namely {Rantidin tab 150 mg, Dexamethasone 0.5 mg tab with confidence reaching 54%} and {Dexamethasone 0.5 tab, Rantidin 150 mg with confidence reaching 39%}. The resulting rule will be a reference in setting the layout of drugs based on the interrelationships between drugs, as well as supply predictions that refer to the percentage of Confidence Level.
Keywords: Pharmacy, Association Rules, Data Mining, Apriori Algorithm.
Abstrak
Salah bidang usaha yang menawarkan layanan kesehatan adalah apotek, yang dapat membantu orang mencapai kesehatan yang optimal. Dalam layanan apotek, data penggunaan obat dipublikasikan setiap hari. Pengolahan data yang tidak tepat dapat mengakibatkan missing value atau kerusakan pada data. Untuk Penanggulangan Masalah yang umum terjadi di Apotek, khususnya di puskesmas Bandarharjo, dibangun sistem yang dapat membantu apoteker bekerja lebih cepat dan mendapatkan informasi yang akurat, yaitu dengan mengolah daftar informasi obat serta menggunakan algoritme datamining (Apriori) untuk mengetahui pola penjualan obat sebagai acuan dalam merencanakan penempatan obat dan mengendalikan persediaan di masa mendatang. Uji coba dengan RStudio untuk menghitung 100 data event, dengan parameter support value minimal 0.5 dan confidence minimal 0.5, dihasilkan 2 rule yaitu {Rantidin tab 150 mg; Dexamethasone 0.5 mg tab dengan confidence mencapai 90%} dan {Dexamethasone 0.5 tab; Rantidin 150 mg dengan confidence mencapai 61%}. Rule yang dihasilkan menjadi acuan dalam mengatur tata letak obat berdasarkan keterkaitan antar obat, serta prediksi persediaan yang mengacu pada prosentase Tingkat Kepercayaan dukungan (Confidence).
Keywords
References
-
How To Cite This :
Refbacks
- There are currently no refbacks.