Penggunaan Convolutional Neural Network Sebagai Pengenalan Huruf Bahasa Ibrani
Abstract
Hebrew is important language due to it has a great attachment with Edenics. Edenics is ancestor language of Semitic that broke down within 70 languages for about 3.784 years ago that influenced many languages in the world also have connection to Hebrew. Hebrew has an important role because it’s used to study Bible and Mishnah. Research was made as a translate system for Hebrew Letter and the author used 27 of Hebrew letters, using Convolutional Neural Network method with AlexNet architecture. The Hebrew letter recognition made by using the Python.The dataset that used seperated into 27 letters for each of every training and testing data. The amount of training data is 3.638 pictures and testing data is 810 pictures. The highest accuration from 3 optimizers were obtained from Adam optimizer with 81,5% accurate.
Key Words: AlexNet Architecture; Hebrew, Convolutional Neural Network
Abstrak
Bahasa Ibrani penting dikarenakan erat hubungannya dengan Edenics. Edenics ialah bahasa Ibu.Semit yang tersebar ke 70 bahasa kurang lebih 3.784 tahun yang lalu dan berpengaruh besar pada banyak bahasa di bumi serta memiliki keterkaitan dengan bahasa Ibrani. Bahasa Ibrani berperan penting dikarenakan digunakan untuk mempelajari Alkitab dan Mishnah. Penelitian dibuat sebagai sistem penerjemah huruf bahasa Ibrani, dan penulis menggunakan 27 huruf alfabet Ibrani serta menggunakan metode Convolution Neural Network dengan arsitektur AlexNet. Pengenalan huruf Ibrani dibuat menggunakan Python. Dataset yang digunakan terbagi menjadi 27 huruf pada setiap data latih dan uji. Total data latih ialah 3.638 gambar. Total data uji ialah 810 gambar. Penggunaan optimizer seperti Adam, SGD dan RMSprop menghasilkan nilai precision, recall, dan accuracy yang berbeda. Hasil akurasi tertinggi diperoleh dari optimizer Adam dengan tingkat akurasi sebesar 81,5%.
Keywords
References
W. R. Wulandari, “Edenic Language Sebagai Bahasa Ibrani : Ibu Bagi Seluruh Bahasa Di Dunia,” J. Teol. dan Pendidik. Kristen, vol. 1, pp. 155–174, 2021, doi: 10.46362/didache.vli2.37.
I. Indha Oytesarp, Pengenalan dasar-dasar Huruf Hebrew. 2019.
D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 87–92, 2021, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2802
C. Umam and L. Budi Handoko, “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana,” Pros. Semin. Nas. Lppm Ump, vol. 0, no. 0, pp. 527–533, 2020, [Online]. Available: https://semnaslppm.ump.ac.id/index.php/semnaslppm/ article/view/199
M. M. Saufi, M. A. Zamanhuri, N. Mohammad, and Z. Ibrahim, “Deep Learning for Roman Handwritten Character Recognition,” Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 2, pp. 455–460, 2018, doi: 10.11591/ijeecs.v12.i2.pp455-460.
N. Kasim, “Pengenalan Pola Tulisan Tangan Aksara Arab Menggunakan Metode Convolutional Neural Network,” Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA), vol. 3, no. 1, pp. 85-95. 2021.
S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 waytle,” 2018. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017, [Online]. Available: https://dl.acm.org/doi/10.1145/3065386
I. Rabaev, K. Barakat, Churkin, and El-Sana, “The Handwritten Hebrew Dataset (HHD_v0),” The 17th International Conference on Frontiers in Handwriting Recognition, 2020. https://tc11.cvc.uab.es/datasets/HHD_v0_1 (accessed Oct. 20, 2022).
O. N. Putri, “Implemetasi Metode CNN Dalam Klasifikasi Gambar Jamur pada Analisis Image Processing,” Tugas AKhir, Universitas Islam Indonesia, 2020.
D. P. Kingma and J. L. Ba, “Adam : A Method For Stochastic Optimization,” 2015.
O. V. Putra, A. Musthafa, M. Nur, and M. Rido, “Classification of Calligraphy Writing Types Using Convolutional Neural Network Method (CNN),” Procedia Eng. Life Sci., vol. 2, no. October, pp. 1–7, 2021, doi: 10.21070/pels.v2i0.1136.
M. E. Al Rivan and A. Setiawan, “Pengenalan Gestur Angka Pada Tangan Menggunakan Arsitektur AlexNet Dan LeNet Pada Metode Convolutional Neural Network,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 19–28, 2022, doi: 10.34010/komputika.v11i1.5176.
M. E. Al Rivan and A. G. Riyadi, “Perbandingan Arsitektur LeNet dan AlexNet Pada Metode Convolutional Neural Network Untuk Pengenalan American Sign Language,” J. Komput. Terap., vol. 7, pp. 53–61, 2021.
C. A. Lorentius, R. Adipranata, and A. Tjondrowiguno, “Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network,” Tugas Akhir, Universitas Kristen Petra, 2019.
Y.F. Riti, & S.S. Tandjung, "Klasifikasi Covid-19 Pada Citra CT Scans Paru-Paru Menggunakan Metode Convolution Neural Network". Progresif: Jurnal Ilmiah Komputer, vol. 18, no. 1, pp. 91-100, 2022.
How To Cite This :
Refbacks
- There are currently no refbacks.