Analisis Sentimen Saham PT Antam Tbk Di Tengah Kenaikan Harga Emas Menggunakan Metode Vader
Abstract
This study explores the link between public sentiment on X (formerly Twitter) about PT ANTAM Tbk stock and gold price movements from March 1, 2024 – October 31, 2024. As a safe-haven asset, gold attracts investors, especially during economic uncertainty. Social media enables real-time public opinion on economic topics like gold and stock prices. Using the VADER method, 1,022 sentiment data points were analyzed (675 positive, 197 negative, 150 neutral). Pearson correlation showed a perfect positive relationship (+1.00) between gold price changes and sentiment. Linear regression yielded R² = 0.999, meaning 99.9% of sentiment variation is explained by gold price shifts. Findings confirm social media sentiment strongly correlates with financial market trends, emphasizing its role as a market indicator. Future research can integrate machine learning and multi-platform analysis to enhance sentiment-based predictions.
Keywords: Sentiment; X; Gold; ANTAM; Regression
Abstrak
Penelitian ini mengeksplorasi hubungan antara sentimen publik di platform X (sebelumnya Twitter) terhadap saham PT ANTAM Tbk dan pergerakan harga emas pada 1 Maret 2024 – 31 Oktober 2024. Sebagai aset safe-haven, emas menarik minat investor, terutama di tengah ketidakpastian ekonomi. Media sosial memungkinkan opini publik tentang harga emas dan saham tersebar secara real-time. Menggunakan metode VADER, 1.022 data sentimen dianalisis (675 positif, 197 negatif, 150 netral). Analisis korelasi Pearson menunjukkan hubungan positif sempurna (+1,00) antara perubahan harga emas dan sentimen. Analisis regresi linear menghasilkan R² = 0,999, artinya 99,9% variasi sentimen dijelaskan oleh perubahan harga emas. Temuan ini menegaskan bahwa sentimen media sosial sangat berkorelasi dengan tren pasar keuangan, membuka peluang riset lanjutan dengan machine learning dan analisis multi-platform.
Keywords
References
M. B. Triki and A. Ben Maatoug, "The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk," Resources Policy, vol. 70, p. 101872, 2020. doi: 10.1016/j.resourpol.2020.101872.
J. Baffes, J. Khadan, and K. Temaj, "Gold shines amid geopolitical uncertainties," World Bank Blogs, May 15, 2024. [Online]. Available: https://blogs.worldbank.org/en/opendata/ gold-shines-amid-geopolitical-uncertainties.
S. MADHAVAN and S Sreejith, “Testing the role of gold in crisis: a global perspective,” Eurasian Journal of Business and Economics, vol. 15, no. 29, pp. 19–33, May 2022, doi: https://doi.org/10.17015/ejbe.2022.029.02.
M. Abdou et al., "Gold Price Prediction using Sentiment Analysis," in 2022 20th International Conference on Language Engineering (ESOLEC), 2022, pp. 41–44. doi: 10.1109/ESOLEC54569.2022.10009529.
A. Kaplan and M. Haenlein, "Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence," Business Horizons, vol. 62, no. 1, pp. 15–25, 2019.
P. Chauhan, N. Sharma, and G. Sikka, "The emergence of social media data and sentiment analysis in election prediction," Journal of Ambient Intelligence and Humanized Computing, vol. 12, pp. 2601–2627, 2020. doi: 10.1007/s12652-020-02423-y.
C. Saravanos and A. Kanavos, "Forecasting Stock Market Alternations Using Social Media Sentiment Analysis and Deep Neural Networks," in 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA), 2023, pp. 1–8. doi: 10.1109/IISA59645.2023.10345902.
K. Valaskova, V. Bartosova, and P. Kubala, "Behavioural Aspects of the Financial Decision-Making," Organizacija, vol. 52, pp. 22–31, 2019. doi: 10.2478/ORGA-2019-0003.
P. Upadhyay et al., "Machine Learning-Based Sentiment Analysis for the Social Media Platforms," in 2023 6th International Conference on Information Systems and Computer Networks (ISCON), 2023, pp. 1–5. doi: 10.1109/ISCON57294.2023.10112120.
M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,” Applied Sciences, vol. 12, no. 17, pp. 8765-8774, Jan. 2022, doi: https://doi.org/10.3390/app12178765.
D. Marutho, M. Rustad, and P., "Sentiment Analysis Optimization Using Vader Lexicon on Machine Learning Approach," in 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2022, pp. 98–103. doi: 10.1109/ISITIA56226.2022.9855341.
C. A. Cruz and F. Balahadia, “Analyzing Public Concern Responsesfor Formulating Ordinances and Lawsusing Sentiment Analysis through VADER Application,” International Journal of Computing Sciences Research, vol. 6, no. 5, pp. 842–856, Jan. 2022, doi: https://doi.org/10.25147/ijcsr.2017.001.1.77.
A. Pathak, M. Pandey, and S. Rautaray, "Topic-level sentiment analysis of social media data using deep learning," Appl. Soft Comput., vol. 108, pp. 107440-107451, 2021. doi: 10.1016/j.asoc.2021.107440.
L. Cheng and S. Tsai, "Deep Learning for Automated Sentiment Analysis of Social Media," in 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2019, pp. 1001–1004. doi: 10.1145/3341161.3344821.
M. Corazza, R. Garcia, F. S. Khan, D. La Torre, and H. Masri, Artificial Intelligence and Beyond for Finance. World Scientific, 2024.
S. Kumar, Python for Accounting and Finance. Springer Nature, 2024.
How To Cite This :
Refbacks
- There are currently no refbacks.