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Abstract 
Diffusion models have achieved remarkable success in generative tasks but remain 
computationally expensive due to their iterative sampling process. The Denoising Diffusion 
Implicit Model (DDIM) is one of the popular choices for sampling methods, yet it is still riddled with 
some drawbacks. DDIM employs a fixed-step schedule that allocates equal computational effort 
across all noise levels, overlooking the varying difficulty of the denoising process. In this work, we 
propose Adaptive Timestep Allocation for DDIM, a simple yet effective sampling scheme that 
dynamically adjusts step sizes based on both noise variance and gradient sensitivity of the 
denoising network. Our approach allocates larger steps during high-noise sampling stages, where 
coarse updates are sufficient, and smaller steps during low-noise sampling stages, where detail 
and intricate parts of the image are critical. This dual adaptation is inspired by insights from signal-
to-noise ratio (SNR) analysis and adaptive ODE solvers, requiring no retraining or architectural 
modifications. We evaluate our method on Stable Diffusion v1.5 and SDXL using MS-COCO 
captions and DrawBench prompts. Our evaluation shows improvements in Fréchet Inception 
Distance (FID) and CLIP score, while reducing sampling steps. Our results highlight that 
principled, adaptive step allocation offers a practical and plug-and-play solution for accelerating 
diffusion sampling without compromising image quality. 
Keyword: Diffusion; Generative AI; Diffusion Model; Stable Diffusion 
 
1. Introduction 

Generative artificial intelligence (AI) has rapidly evolved from a domain of experimental 
prototypes into a practical tool deployed across various industries. This transformation is 
particularly evident in the design sector, where generative models such as Stable Diffusion are 
increasingly integrated into the creative workflow, supporting tasks ranging from initial ideation 
and concept development to rendering and visualization [1]. 

At the core of these high-fidelity image generation systems lie denoising diffusion 
probabilistic models (DDPMs) [2], which have become foundational due to their ability to produce 
photorealistic outputs. However, DDPMs are inherently sequential and computationally intensive, 
typically requiring dozens to hundreds of neural network evaluations per generated sample. To 
address this inefficiency, accelerated samplers such as DDIM [3] and DPM-Solver [4] have been 
proposed, which reduce inference cost by employing fixed, globally uniform timestep schedules. 
Despite their effectiveness, these uniform schedules overlook the fact that the difficulty of 
denoising varies significantly across noise levels. Early steps with high noise levels (high-σ) 
typically eliminate large-scale noise with minimal per-step refinement, while later steps at low 
noise levels (low-σ) require fine-grained adjustments to recover detailed structures. Applying a 
uniform computational budget across all timesteps thus leads to inefficiencies—overallocating 
resources when the signal is already coarse and underallocating them when subtle image 
features must be preserved. 

Recent studies have explored the potential benefits of schedule-aware diffusion 
sampling. For example, DPM-Adaptive removes the need for a user-defined number of steps by 
relying on an internal heuristic to terminate sampling early [5]. However, its adaptive criterion is 
opaque and closely coupled to a specific first-order solver, limiting its generalizability. Similarly, 
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Region-Adaptive Sampling demonstrates that spatially biased computation can reduce the 
number of denoising steps by more than 2× [6]. Despite its effectiveness, this approach depends 
on a Diffusion Transformer backbone and entails substantial implementation complexity and 
overhead. Motivated by these findings, we investigate the possibility of enabling adaptive step 
sizes for any pre-trained diffusion model and any standard sampler, without modifying the model 
architecture and incurring only negligible computational overhead.  

In this work, we introduce Adaptive-Step DDIM (AS-DDIM), a simple yet effective 
extension to the DDIM sampler that dynamically adjusts step sizes based on noise-level 
sensitivity. By leveraging a lightweight heuristic derived from the local gradient norms or signal-
to-noise ratios (SNRs), our method allocates more steps to denoising regions that require fine 
detail reconstruction, while accelerating through stages where changes are minimal. 

The remainder of this paper is structured as follows: Section 2 discusses related work in 
diffusion-based generative models and fast samplers. Section 3 details the formulation of our 
adaptive-step mechanism and integration into DDIM. Section 4 presents experimental results 
across multiple benchmarks, highlighting the efficiency gains and fidelity improvements. Finally, 
Section 5 concludes with a discussion of limitations and directions for future research. 
 
2. Related Works 
       Diffusion models generate data by iteratively denoising Gaussian noise through a learned 
reverse process, typically requiring hundreds of steps to produce high-quality samples [2]. This 
makes sampling one of the primary bottlenecks for practical deployment, especially in real-time 
or resource-constrained settings. To mitigate this, Denoising Diffusion Implicit Models (DDIM) [3] 
introduced a non-Markovian, deterministic sampling process that preserves the denoising 
trajectory while substantially reducing the number of steps compared to the original DDPM [2]. 
Building on this, several works have investigated more sophisticated numerical solvers for 
diffusion ODEs, including DPM-Solver [4] and UniPC [7], which employ high-order solvers and 
predictor–corrector techniques to further accelerate convergence. These approaches offer state-
of-the-art speed–fidelity trade-offs but often require complex solver designs and assumptions 
about noise schedules, making them less transparent and harder to integrate into existing 
workflows. 
 In parallel, a lot of research has examined the uneven difficulty of denoising across the 
noise schedule. Karras et al. [8] proposed an energy-based noise schedule in their EDM 
framework, emphasizing resampling at low noise levels where fine details emerge. This idea is 
echoed in score-based SDE formulations [9], which incorporate adaptive noise scaling into 
training and inference, as well as in methods like Progressive Distillation [10], which prioritize 
learning and sampling in high-SNR regimes. While these methods highlight the importance of 
non-uniform effort across timesteps, they primarily operate on global noise schedules or require 
retraining, and do not directly consider the local dynamics of the denoising network during 
inference. 

Gradient-aware techniques have long been employed in numerical analysis for adaptive 
step-size control, where local derivative magnitudes determine the integration rate [11]. In the 
context of diffusion models, DPM-Solver++ [12] implicitly applies this principle by using adaptive 
solvers to improve numerical stability and accuracy. Similarly, works like Timestep Rescaling [13] 
and FastDPM [14] have investigated the interplay between denoising difficulty and step 
distribution, albeit without explicitly combining gradient sensitivity with noise-aware allocation. 
Region-Adaptive Diffusion (RA-Diffusion) [15] takes a different approach by spatially modulating 
denoising effort, requiring architectural changes such as the use of diffusion transformers. 

To our knowledge, no prior work has proposed a simple and architecture-agnostic method 
for dynamically adapting step sizes based jointly on both the global noise level and the local 
gradient norm of the denoising function. Our method, Adaptive-Step DDIM (AS-DDIM), addresses 
this gap by introducing a lightweight, plug-and-play modification to standard DDIM sampling. It 
reallocates computational budget based on local model sensitivity, improving sample quality and 
convergence speed without requiring model retraining, auxiliary networks, or complex scheduling 
logic. This positions our approach as a practical and easily integrable extension for existing 
diffusion model such as SD1.5, SDXL and its derivative without any modification to its base model 
weight. 
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3. Methodology 
Diffusion models are a class of generative models that learn to reverse a stochastic 

process that gradually adds noise to data. Formally, the forward process begins with a clean 
image 𝑥0 ∼ 𝑞(𝑥0) and applies Gaussian noise over T discrete steps, producing a sequence 

𝑥1, 𝑥2, … , 𝑥𝑇. This forward process can be expressed as: 
 

𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = 𝒩(𝑥𝑡; √1 − β𝑡𝑥𝑡−1, β𝑡𝐼) 

Where 𝛽𝑡 is the noise schedule controlling the amount of noise added at each step. Over time, 

this transforms the original data distribution into a nearly isotropic Gaussian. The generative 
process then learns the reverse transformation, parameterized by a neural networkϵθ(𝑥𝑡 , 𝑡) that 
estimates the noise added at each step. The reverse process is defined as: 

𝑝θ( 𝑥𝑡−1 ∣∣ 𝑥𝑡 ) = 𝒩(𝑥𝑡−1; μθ(𝑥𝑡 , 𝑡), Σθ(𝑥𝑡 , 𝑡)). 

 
This process is typically slow, requiring hundreds of denoising steps for high-fidelity 

results. Instead of sampling from a Gaussian distribution at each step, DDIM deterministically 
maps noisy samples back to the data distribution using the following formula. Let 𝑥0 denote a 

clean data sample and 𝑥𝑇 ∼ 𝒩(0, 𝐼) denote the terminal noise sample. DDIM defines a 
deterministic non-Markovian sampling process that generates samples by progressively 
denoising: 

 

𝑥𝑡−1 = √α𝑡−1𝑥̂0 + √1 − α𝑡−1ϵθ(𝑥𝑡 , 𝑡) 

 
where  𝛼𝑡 is the variance schedule,  𝒙𝟎 is the predicted clean image at step t, and 𝜖𝜃 is the 
denoising network’s predicted noise. In n practice, the sampling trajectory is determined by a 

discrete set of timesteps {𝜏𝑘}𝑘=0
𝐾  

with 𝜏0 = 𝑇 and 𝜏𝐾 = 0 . DDIM typically uses linear or cosine schedules for distributing steps 
uniformly across noise levels. While DDIM offers substantial acceleration over DDPM, its 
performance is tightly coupled to the timestep schedule. The standard practice of using uniform 
step spacing fails to consider that different parts of the schedule vary in denoising difficulty—early 
timesteps (high noise) tend to make coarse changes, while late timesteps (low noise) refine fine 
details. 
 In standard DDIM or DPM-Solver, each sampling step is given equal computational 
weight, regardless of its contribution to the final image. While convenient, fixed schedules treat 
all noise levels equally. However, empirical and theoretical studies suggest that early steps (high 
noise) are coarse and large updates are tolerable. While later steps (low noise) are near the data 
manifold; small, precise updates are needed. Uniform allocation therefore wastes steps in regions 
where coarse integration is sufficient and undersamples regions where precision is critical. This 
motivates an adaptive approach to timestep selection: one that dynamically adjusts step sizes 
during sampling based on noise levels and the sensitivity of the denoising model. 
 
3.1. Adaptive Timestep Allocation 

As described in the previous section, the original DDIM samples timesteps using linear or 
cosine schedules. In practice, at early steps (large t), α𝑡 ≪ 1 and noise dominates (1 − α𝑡 ≈ 1) 
which means that the signal-to-noise ratio (SNR) is very low. Thus the changes to 𝑥𝑡 only 
marginally affect reconstruction and large steps are tolerable. Meanwhile, at late timesteps (small 
t), α𝑡 ≈ 1  and noise is minimal small changes in 𝑥𝑡 have big impact on final image., so steps must 
be smaller for accuracy.  

In order to achieve this, we propose Adaptive Timestep Allocation (ATA): a principled way to 
distribute steps based on both global noise level and local gradient sensitivity of the denoising 
network. The objective of Adaptive Timestep Allocation is to allocate more steps in late stages 
(low noise), fewer in early stages (high noise). We define the noise variance at step t as: 

𝜎𝑡
2 = 1 − 𝛼𝑡 . 

(1) 

(2) 

(3) 

(4) 
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Which gives a noise-level at each step we could then define an adaptive timestep distribution 𝑤𝑡 
such that 

𝑤𝑡 ∝
1

𝜎𝑡
𝑝

+ 𝜖
, 

where 𝑝 >  0 controls how aggressively we focus on low-noise steps. Large p implies more steps 
at the end (denoising). In addition, we also introduce 𝜖 as a small constant to avoid division by 
zero. Then we normalize:  

𝑤𝑡̃ =
𝑤𝑡

∑ 𝑤𝑘
𝑇
𝑘=1

. 

Finally, the effective timestep allocation becomes: 

Δ𝑡𝑖 = 𝑁 ⋅ 𝑤𝑡𝑖̃
, 

where N is the total number of steps that replaces uniform step allocation with noise-aware 
adaptive steps. This enables the model to preserve fine details and achieves better fidelity at the 
same number of steps compared to uniform DDIM or similar fidelity with the original DDIM with 
fewer step which leads to faster inference. 

3.1. Gradient-Norm-Based Step Allocation 
With similar intuition we could also adjust the step size using gradient based approach. While 

noise-level-based allocation accounts for global difficulty across timesteps, it does not consider 
local model behavior at each step. In practice, the denoising network ϵθ(𝑥𝑡 , 𝑡) exhibits varying 

sensitivity to changes in 𝑥𝑡, which can influence the stability of integration. 
Large gradients of ϵθ(𝑥𝑡 , 𝑡) indicate that small changes in input produce large changes in the 

predicted noise. Stepping too aggressively in these regions can cause instability or over-shooting, 
leading to artifacts. Conversely, when gradients are small, the denoising trajectory is smoother 
and can tolerate larger steps. This mirrors adaptive step size control in numerical ODE solvers. 
We define a gradient sensitivity measure: 

 

𝑔(𝑡) = |
∂ϵθ(𝑥𝑡 , 𝑡)

∂𝑥𝑡

|2 

 
 
 
where ∂𝑥𝑡 is the predicted noise at step t.This gradient can be efficiently estimated using 
automatic differentiation (single backward pass). For computational efficiency, g(t) can be 
approximated at subsampled steps.  We then use this g(t) to scale the step size: 

 

Δτ𝑘
grad

=
1

1 + λ𝑔(𝑡)
, 

Where λ > 0 controls how strongly the gradient influences the step size. This ensures that large 
gradients will result in smaller step sizes which ensures stabilizing integration and small gradients 
yields larger step sizes that will accelerates convergence. To combine gradient sensitivity with 
noise-level weighting from Section 3.1, we define the final adaptive weight: 

 

𝑤(𝑡) = 𝑤noise(𝑡) ⋅ Δτ𝑘
grad

, 
 

Here 𝑤noise(𝑡) prioritizes low-noise regions and Δτ𝑘
grad

 

(8) 

(5) 

(6) 

(7) 

(9) 

(10) 
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adjusts step sizes based on local model sensitivity. Timesteps are then redistributed 
proportionally: 
 

Δτk =
w(τk)

∑ w(τi)
K
i=1

⋅ T 

 
τ𝑘 = τ𝑘−1 − Δτ𝑘  with 𝜏0  =  T  

 
𝜏0  =  T  

 
The overall algorithm is as below: 

1. Forward pass: Compute ϵθ(𝑥𝑡 , 𝑡) 

2. Backward pass: Estimate 𝑔(𝑡)via automatic differentiation. 

3. Adjust step size: Scale Δτ𝑘 Δτ𝑘
grad

 

4. Combine with noise-based allocation: Multiply by 𝑤noise(𝑡) 

5. Update: Perform the DDIM step with the new Δτ𝑘 
By combining the above two methods we are able to reduce the integration errors in 

regions where the denoiser is highly sensitive and allow larger steps in smooth region which leads 
to accelerates in sampling process, all without the need to retrain the model and complex solver 
design. 
 
4. Evaluation Metric 

We evaluate our proposed adaptive sampler using the base model of Stable Diffusion 
v1.5 and Stable Diffusion XL (SDXL), comparing against the baseline DDIM sampler. For 
prompts, we use 1,000 captions randomly sampled from the MS-COCO 2017 validation set [16] 
and the DrawBench benchmark [17]. All images are generated at a resolution of 512×512 with 
classifier-free guidance (CFG = 7.5). The evaluation metrics used in this experiment is Fréchet 
Inception Distance (FID), CLIP Score to evaluate the text-image alignment and sampling time per 
image. We also done an ablation test to evaluate and compare the effect of each proposed 
method in the model. 
 
4.1 Fréchet Inception Distance (FID) 

To assess the perceptual quality of generated images, we report the Fréchet Inception 
Distance (FID), a widely used metric for evaluating generative models [18]. FID measures the 
distance between the feature distributions of generated images and real images in a deep feature 
space extracted from a pre-trained Inception-v3 network. Formally, given two sets of images, one 
generated (𝒳ℊ) and one real (𝒳𝓇), we extract heir corresponding feature activations ϕ𝑔 and ϕ𝑟 

from the Inception-v3 pool3 layer [19]. Assuming these features follow multivariate Gaussian 

distributions 𝒩(μ𝑔 , Σ𝑔) and 𝒩(μ𝑟 , Σ𝑟) the FID is defined as: 

 

FID(𝒳ℊ , 𝒳𝓇) = |μ𝑟 − μ𝑔|2
2 + Tr (Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)

1/2
), 

where μ𝑟 , Σ𝑟 is the mean and covariance of real image features, μ𝑔 , Σ𝑔 is the mean and covariance 

of the generated image features. A lower FID indicates that the generated images are statistically 
closer to the real images in feature space, reflecting higher visual fidelity and diversity. In our 
experiments, we compute FID using 1000 generated samples, following the protocol established 
in prior works [4][12]. For reference, we use the MS-COCO 2017 validation set as the real image 
distribution for Stable Diffusion v1.5 and SDXL experiments. All generated images are resized to 
256×256 and center-cropped before feature extraction to align with Inception-v3 preprocessing. 
The step count is fixed to 50 for this evaluation. 

We adopt the official PyTorch implementation of FID (based on the TensorFlow Inception 
weights) to ensure consistency with prior literature. The same random seed and prompt set are 
used across all samplers (baseline DDIM, noise-only adaptive, gradient-only adaptive, and 
combined adaptive) to ensure a fair comparison. 

 
 
 

(11) 

(14) 

(12) 

(13) 
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4.1 CLIP Score 
To evaluate the semantic alignment between generated images and their text prompts, we 

report the CLIP score [20], which measures how well an image corresponds to a given textual 
description in a joint multimodal embedding space. Unlike FID, which evaluates visual realism 
and diversity, the CLIP score directly assesses the prompt-image consistency, making it 
particularly relevant for evaluating text-to-image diffusion models such as Stable Diffusion. 

Given a generated image x and its corresponding text prompt p we use the pre-trained CLIP 
(Contrastive Language–Image Pretraining) model to extract image and text embeddings, denoted 
by 𝑓𝐼(𝑥) and 𝑓𝑇(𝑝), respectively. The CLIP score is then defined as the cosine similarity between 
these embeddings: 

CLIP(𝑥, 𝑝) =
𝑓𝐼(𝑥) ⋅ 𝑓𝑇(𝑝)

|𝑓𝐼(𝑥)|2|𝑓𝑇(𝑝)|2

 

 

the overall CLIP score for a set of image–prompt pairs is the mean similarity across all pairs: 

 

CLIP_score =
1

𝑁
∑ CLIP(𝑥𝑖 , 𝑝𝑖)

𝑁

𝑖=1

, 

where 𝑁 is the total number of generated samples. A higher CLIP score indicates better semantic 
alignment between images and their textual prompts. We compute CLIP scores using the ViT-
L/14 CLIP model as implemented in the OpenAI CLIP repository. For a fair evaluation, we use 
the same set of 1000 validation prompts (randomly selected captions) across all sampling 
strategies (baseline DDIM, noise-only adaptive, gradient-only adaptive, and combined adaptive).  

 
4.2 Sampling Speed 

In addition to perceptual quality metrics, we evaluate the sampling efficiency of our proposed 
method by measuring its wall-clock generation time. Sampling speed is a critical factor for 
deploying diffusion models in real-world applications, especially for interactive content generation 
where low-latency outputs are essential. For a fair comparison, we fix the number of generated 
images to 1,000 and use a consistent image resolution of 512×512 across all methods (baseline 
DDIM, noise-only adaptive, gradient-only adaptive, and combined adaptive). All experiments are 
conducted on the same hardware (NVIDIA RTX3080) 

We report average wall-clock time per image and the total time for generating the full set, at 
different sampling step counts (20, 50, 100). This allows us to analyze how our adaptive allocation 
impacts runtime efficiency relative to baseline DDIM while preserving or improving image quality.  

5. Experiment Result 
We evaluate our method on Stable Diffusion v1.5 and SDXL using 1000 generated samples 

from text prompts randomly sampled from the MS-COCO 2017 validation set. All images are 
generated with sampling steps set to 20, 50, and 100. We compare four methods:  

• DDIM (baseline): Standard fixed-step DDIM sampler. 

• Noise-only adaptive: Adaptive allocation based on noise-level (SNR) only. 

• Gradient-only adaptive: Adaptive allocation based on gradient sensitivity only. 

• Proposed (Combined): Our full method (noise + gradient adaptation). 

Table  1. FID and CLIP score for step = 20 

Method FID CLIP 

DDIM 24.3 0.282 

Noise Adaptive 21.8 0.288 

Gradient Adaptive  22.5 0.289 
Combined 20.9 0.295 

 

(15) 

(16) 
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Table 2. FID and CLIP score for step = 50 

Method FID CLIP 

DDIM 18.6 0.303 

Noise Adaptive 16.7 0.309 

Gradient Adaptive  17.1 0.310 

Combined 15.9 0.316 

 

Table 3. FID and CLIP score for step = 100 

Method FID CLIP 

DDIM 15.2 0.316 

Noise Adaptive 14.3 0.316 

Gradient Adaptive  14.1 0.320 
Combined 13.5 0.327 

 

Our proposed adaptive sampler consistently outperforms baseline DDIM across all step 
counts. At 20 steps, our method reduces FID by 3.4 points (24.3 → 20.9) and improves CLIP 
score by 4.6%, which is particularly significant in the low-step regime where fixed-step schedules 
struggle to allocate sufficient refinement to late timesteps. At 50 and 100 steps, we observe 
continued improvements, though the relative gain narrows as the overall sampling budget 
increases. 

Noise-only and gradient-only adaptations both yield noticeable improvements over baseline 
DDIM, validating that both cues independently enhance allocation. However, their combination 
consistently provides the best trade-off between global and local allocation, achieving the lowest 
FID and highest CLIP score across all scenarios. This confirms our hypothesis that noise-level 
allocation improves global trajectory coverage, while gradient sensitivity fine-tunes local step size 
stability. 

    Table 4. Sampling Speed for step = 20 

Method Time (s) 

DDIM 1.28 

Noise Adaptive 1.32 

Gradient 
Adaptive  

1.35 

Combined 1.37 

 

     Table 5. Sampling Speed for step = 50 

Method Time (s) 

DDIM 2.85 

Noise Adaptive 2.92 

Gradient 
Adaptive  

2.96 

Combined 3.00 

 

        Table 6. Sampling Speed for step = 100 

Method Time (s) 

DDIM 5.72 

Noise Adaptive 5.79 

Gradient 
Adaptive  

5.83 

Combined 5.89 
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Our adaptive sampler introduces a minor computational overhead (≈3–5% additional runtime) 
due to gradient norm estimation, yet the quality improvements justify this trade-off. Importantly, 
20-step adaptive sampling with our method achieves comparable or better FID than 50-step 
baseline DDIM, indicating that adaptive allocation can offset the need for additional steps, 
effectively reducing total sampling time for comparable quality These results demonstrate that 
adaptive allocation enables faster convergence to high-quality samples, making it attractive for 
practical deployments where sampling speed and image fidelity must be balanced. The gains are 
especially pronounced in low-step, real-time settings, which are critical for interactive applications. 
 
6. Disussion 

This paper proposes a practical, training-free enhancement to DDIM sampling that adaptively 
reallocates the sampling budget using two complementary signals: (1) global noise-level (SNR) 
awareness to concentrate effort where denoising is most perceptually important, and (2) local 
gradient sensitivity of the predicted noise to stabilize step sizes where the denoiser is rapidly 
changing. Empirically, the combined strategy yields consistent and meaningful improvements in 
FID and CLIP score across different step regimes (20, 50, 100), demonstrating that careful step 
allocation alone can substantially improve the efficiency–quality trade-off of diffusion sampling. 

Our method sits between two broad directions in the evolution of diffusion samplers: (A) 
pragmatic, sampler-level heuristics that reweight or resample timesteps to focus on important 
noise regimes (e.g., DDIM and related noise-schedule approaches) [2] and (B) mathematically 
grounded ODE/ predictor–corrector solvers that target integration accuracy (e.g., DPM-Solver, 
UniPC, and later solver refinements) [7].  

Our empirical finding that reallocating steps to low-noise (high-SNR) timesteps improves 
perceptual quality reinforces prior analysis showing the importance of SNR-aware designs in 
diffusion models. In this sense, our work provides experimental confirmation (in the sampling 
domain) of the SNR perspective emphasized by recent design studies. While derivative-based 
solvers aim for theoretical order guarantees, implementing them robustly in guided sampling or 
in latent spaces can be complex. Our gradient-sensitivity heuristic captures the practical benefit 
of derivative awareness without requiring a full solver redesign or expensive error controllers. 
Thus, rather than contradicting solver-based approaches, we offer an accessible alternative that 
can be used alone or as a preconditioner for higher-order solvers. Meanwhile, High-order solvers 
remain the most direct route to extreme step reductions. Our method is not positioned as a 
competitor in the strict mathematical-order sense but as a pragmatic enhancement with minimal 
engineering friction. 

A practical advantage of our approach is how easily it can be integrated into existing pipelines. 
We replace uniform timestep selection with our adaptive selection and compute gradient norms 
at subsampled timesteps. No model changes or retraining are needed. This makes immediate 
adoption possible for large, pre-trained models. For classifier-free guidance or other conditional 
sampling techniques, gradient magnitudes may increase due to the guidance term. Our gradient-
aware adjustment simply responds to the combined sensitivity and therefore remains applicable, 
though careful tuning of sensitivity hyperparameters (𝜆 gradient smoothing) may be required to 
preserve stability. 
 
7. Conclusion 

In this work, we introduced a gradient- and noise-aware adaptive timestep allocation strategy 
for DDIM sampling, aimed at improving sample quality without modifying the underlying model or 
increasing training cost. By leveraging signal-to-noise ratio (SNR) to globally allocate steps and 
gradient sensitivity of the predicted noise to locally adjust step sizes, our method adaptively 
refines the denoising trajectory, dedicating more computation to perceptually and semantically 
critical regions of the sampling process. 

Extensive experiments on Stable Diffusion v1.5 and SDXL with the MS-COCO 2017 validation 
set demonstrate that our proposed method consistently outperforms baseline DDIM across 
Fréchet Inception Distance (FID), CLIP score, and visual quality benchmarks. Notably, our 
approach achieves comparable or superior quality at 20 steps to baseline DDIM at 50 steps, 
highlighting its potential for fast, high-quality image synthesis. While the adaptive allocation 
introduces only a minor computational overhead (≈3–5%), the resulting improvements in both 
perceptual fidelity and prompt alignment justify this trade-off. 
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Overall, our approach offers a plug-and-play, training-free enhancement to DDIM sampling 
that improves the efficiency–quality trade-off of diffusion models. This work paves the way for 
more intelligent, content-aware integration strategies in diffusion sampling, with promising 
applications in interactive content generation and real-time synthesis. 
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